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Hello,  and welcome to NPTEL MOOC on Fiber-Optic  Communication  Systems and

Techniques. In this module, we will study pulse propagation through optical fibers. Now,

you might ask we have been studying pulse propagation through optical fibers in the last

two three modules, what new thing are we going to discuss in this module. It turns out

that pulse propagation through optical fibers is such an important topic for it has many,

many applications which maybe some of them may be good, some of them may be bad

ok.

But, it is very important to understand, how the pulse is affected as it propagates through

the fiber. For example, in communication systems that is when we use optical fibers to

communicate information in the form of pulses right, so each pulse may be representing

an information in a certain manner. For example, the presence of an optical pulse of a

certain  duration  t  0,  may  represent  bit  1  being  transmitted  in  a  digital  optical

communication  system;  and  an  absence  of  a  pulse  may  represent  a  bit  0  being

transmitted ok.

And if the fiber were to be an ideal channel, it would only it would not actually change

the amplitude as well as it would not distort the pulse, it would not broaden the pulse or

it would not compress the pulse. But, unfortunately as we have seen an optical fiber is

not  an ideal  channel,  although it  is  much better  channel  compared to  other  types  of

channels that are available say copper cable, satellite, earth communication and so on

and so forth.

But, nevertheless there are certain things that the optical fiber does do the pulse that is

propagating  which  causes  errors,  when  you start  detecting  them at  the  receiver. So,

leading to some errors which is quantified usually in the form of a bit error rate. So, you

want to keep the system BR bit error rate to be small, then it is necessary to understand,

how these pulses actually propagate through the fiber. 
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We have already seen how pulses propagate through the fiber in some sense, because we

derived what is called as a pulse propagation equation correct. So, this pulse propagation

equation, we derived it which governs how in the typical propagation problems, how a

pulse whose amplitude let us say or envelope, let us say is given by a 0, t to remind you

again 0 is for z equal to 0 that is at the input of the fiber. 

How this would change to a z, t right, so in fact this change is governed by a certain

equation, which is the pulse propagation equation, which says del a of z, t by del z that is

the  rate  at  which  this  a  is  changing with respect  to  z  is  directly  proportional  to  the

dispersion  parameter  beta  2,  which  is  which  we called  in  the  last  module  as  group

velocity dispersion correct, it is technically group delay dispersion. But, these two terms

are sometimes used interchangeably, because delay and velocity  are inversely related

with respect to each other. And what was the other term here, it was del square a z, t by

del t square. 

So, you might say that well we already have a pulse propagation equation. So, it would

actually  make  our  life  very  easy  to  understand  pulse  propagating  through  the  fiber.

Unfortunately, this equation can be solved only for very special cases; that is it can have

solutions closed form solutions, as we would call them only for very special cases. And

one such special cases that of the Gaussian shaped pulse, which was propagating through

the fiber.



And  we  saw  in  the  last  module  that  when  you  take  an  unchirped  Gaussian  pulse

propagated  through the fiber. Then at  the output  of  the fiber, the pulse will  become

chirped that is its phase will change across the pulse. So, different parts of the pulses are

experiencing different phases. And this phase change is dependent on the position of the

pulse  that  you  are  actually  looking  at.  And  therefore,  this  gives  you  an  unwanted

frequency modulation, because change in phase or rate of change of phase will directly

impact the instantaneous frequency of the pulse.

So, the spectrum you know or the pulse will actually undergo chirping as we would call

and depending on the sin of beta 2, it would either be linear up chirp or linear down

chirp. And this linear chirp is simply, because we have assumed the Gaussian pulse to

propagate in the fiber ok. However, that so that that special case of Gaussian pulse is not

really true for all you know for all practical applications, I mean yes. Most of the pulses

that are you know generated by lasers, both from semiconductor lasers and you know

fiber lasers, can be approximated to have pulse shape, which is Gaussian or even if it is

not Gaussian, it is close relative that of the secant hyperbolic function, which also has

certain analytical solutions, closed form solutions.

So, you can use these equations, solve the equation to know precisely, what happens as

the Gaussian pulse or the hyperbolic secant pulse passes through these fibers. Secant

hyperbolic pulses and Gaussian pulses themselves are very good approximation to pulse

shapes that are actually produced. But, in many situations in communication systems in

order to combat what is called as inter symbol interference you want to shape the pulses

that are propagating in the fiber ok.

So, you will actually shape the pulses using certain filters. And this shaped pulses will

not be so easy to solve analytically. To understand, what is happening to those pulses as

they propagate. For example, the simple thing that if I were to take an arbitrary launch, I

mean pulse and launch it into the fiber, and ask how does the pulse width change for this

pulse. I would not be able to find out by solving this equation in the analytical sense

right.  So  it  is  not  like  ok  given  this  pulse,  use  this  equation,  solve  write  some

mathematical equations, and then finally obtain the expression for the output pulse. It

just does not happen for arbitrarily shaped pulses. And arbitrarily shape pulses are very

important  in  all  pulse  processing  applications  including  communications  and  certain



other applications, which are related closely to non-linearity in the fiber something that

we have not really discussed yet.

So, if we cannot really use this pulse propagation equation, then what good is this pulse

propagation equation. It turns out that the equation is more or less fine ok, except that we

cannot solve it analytically for all arbitrary cases. Therefore, we will solve it numerically,

because I can use a computer. And then, I can change this equation or solve this equation

on a computer. And then study different or arbitrary pulse shapes that are propagating in

the fiber. And what is the effect of dispersion on the fiber ok, so that is what we are going

to do.

And one such technique in order to do that that is numerically solve these equations is

what is called as beam propagation method ok. It is actually a subset of another method

called a split step Fourier method, which is used to solve even more generalized pulse

propagation equation that generalize pulse propagation equation is called as non-linear

Schrodinger equation. And that will account for the non-linearity in the optical fiber that

non-linearity in the optical fiber is not of immediate concern to us, it will be discussed in

some later modules ok.

So, but the basic idea of beam propagation method is what we are going to discuss, in

this module. And it is such a nice and simple method that you can write about 20 or 30

lines of MATLAB or Scilab code to actually implement this beam propagation method.

And study how different pulse shapes actually propagate through the fiber, given the

parameters of the fiber right.

So, what parameters of the fiber do you have, you have attenuation, you have beta 2,

which of course in the second order dispersion or the group velocity dispersion. And L

being  the  length  of  the  fiber,  you need to  know this.  Sometimes  in  the  problem or

sometimes in practice you do not really know what is the length of the fiber or you are

not  really  interested  in  the  actual  length  of  the  fiber,  but  you  are  interested  in  the

dispersion length of the fiber.

And if you recall what dispersion length of the fiber was, it was actually defined as the

ratio of the square of the pulse width t 0 or rather t 0 square and the magnitude of the

dispersion  coefficient  beta  2  or  rather  magnitude  of  the  dispersion  parameter  GVD

parameter  beta  2 ok.  Because,  you know that  significant  changes in  the pulse shape



happens only for fiber lengths, which approach or exceed this dispersion length ok. So,

this is what you have, of course you might observe that in these equations that we have

written  in  the  pulse  propagation  equation  that  we  have  written.  We have  not  really

included attenuation alpha.

Now, it  is  a  simple  phenomenological  way  of  including  alpha  that  is  possible.  For

example, suppose the fiber has no dispersion, which means that beta 2 is equal to 0. Then

what do you expect the pulse to actually look like, when it propagates through the fiber.

The pulse envelope  would simply be whatever  the pulse that  you have at  the input,

except it is now attenuated by a factor of say e power minus alpha z where alpha is the

attenuation parameter or the attenuation of the fiber that we have taken.

Of  course,  in  many  cases  alpha  represents  the  power  attenuation  that  is  attenuation

measured  with respect  to launch power, and the power that  is  available  at  the fiber.

Therefore, to take into account that we are dealing with fields and not really with powers,

you can just divide this alpha by 2. So, you actually have field attenuation of alpha by 2,

whereas power attenuation of alpha. And this is what you are going to obtain, in the

absence of dispersion right.

So in the absence of dispersion which we will call as say C D just as a general place

holding convention so, CD is not really the only dispersion that we are considering, it

could in fact be material dispersion, it could be wave guide dispersion, in that it could be

inter model, intra model all those dispersions can be are all different, but we will put all

of them together in the heading of CD ok.

So, in the absence of CD, this is what we expect that they will simply be a amplitude

change.  And  this  amplitude  change  can  be  incorporated  by  modifying  our  pulse

propagation equation by simply writing this as minus alpha by 2 a z, t right. I hope you

see that how simple it is to write this one, because you can differentiate the left hand side

with respect to z, and the right hand side with respect to z. And then, you will see that

this minus alpha by 2 term will drop out. And then, it will be proportional to on the right

hand side will be proportional to minus alpha by 2 times a z, t.

So, addition of this minus alpha by two a z, t  will help you to take into account the

attenuation, but because attenuation is usually not so frequency dependent for the region

of  operation  that  we are  considering.  We do not  really  worry  about  attenuation  ok,



because whatever that we have at the output of the pulse. We will finally, multiply that 1

by e power minus alpha by 2 times z, so because you can account for attenuation in a

very simple manner.

Usually, this term is not included in solving the pulse propagation equation. Of course,

the equation that we have written is very nice ok. It helps you to understand how the

pulse propagating through the fiber, but it does not really tell you. What happens when

you have two different pulses, one pulse having a frequency or centered at frequency

omega 0, and the other pulse centered at frequency omega 1.

We know that when you have two pulses at two different frequencies, then these two

would correspond to two different values of V 0 and V 1. Assuming, we are looking at

single mode propagation. This would correspond to two different V parameters V 0, V 1,

which in turn would correspond to two different normalized parameters V 0 and V 1. Of

course,  these are only at  the center  any other frequency components will  have to be

looked at whether deviation about omega 0 and about omega 1. And the fact that b 0 and

b 1 are different leads us to know that the group velocity will also be different. So, group

velocity for the pulse which is centered at omega 0 will be v g 0, whereas the group

velocity for pulse which is centered at omega 1 will be v g 1.

Therefore,  you should technically  to account for the fact that you can have different

group velocities, add a term that would also include this group velocity term. And since,

we know that group velocities are inverse group velocity is related to beta 1. The term

that you want to add actually will be first order with respect to del t, and it would be del a

z of t by del t ok. 

So, this is the term that you need to add, if you are going to consider group velocity as a

separate term, in that case the time that you are representing t here will not be the delay

time or the retardation time, but it will actually be the or it will be the actual time of the

pulse that you are considering ok. However, again unless you are dealing with multiple

pulses,  which  are  all  centered  at  different  frequencies.  You  do  not  usually  consider

solving this pulse propagation equation by including the term beta 1.

However, when you have multiple  pulses, you have to write an equation,  which will

include the individual group velocities. So, you will have beta 1, 0 beta 1, 1 and so on for

different  frequency  components.  And  those  also  should  be  reflected  in  the  pulse



propagation equation ok. The point of for the last 5 10 minutes of what I am saying is

that we actually have this equation. And we are going to solve this equation using some

numerical methods ok, because other terms although are important are not necessarily

important.

At this stage in since it is our first introduction of a numerical method for solving pulse

propagation. The other terms become important, when you allow for pulses to interact

with each other. And this interaction is actually brought out by the non-linearity in the

fiber, so because we are going to postpone non-linearity for quite some time. We are not

going to deal with pulse to pulse interaction.

(Refer Slide Time: 15:44)

We simply assume that you have a pulse or a sequence of pulse, which is propagating

through the fiber. And that can be studied by solving this pulse propagation equation. So,

the idea is that we have the fiber of certain length L has a parameter beta 2. Of course,

beta  2  can  be  positive  or  negative  and  moreover  beta  2  itself  can  vary  over  the

frequencies. So, in that case you will have to also deal with beta 3 ok, which is much

more  complicated.  And  it  will  modify  the  pulse  propagation  equation  in  a  slightly

different manner, which we will see in the end of this module ok. 

And the goal here is that you have a certain launch power ok. So, you have a certain

launch power here, and you want to know what happens to this launch pulse not launch

power,  it  is  launch  pulse.  You  want  to  know, what  happens  to  this  pulse  which  is



launched into the fiber, how does it show up on the output. And you can you are going to

do that one or you are going to know that one by using what is called a beam propagation

method.

(Refer Slide Time: 16:32)

Now, what  is  beam propagation  method,  let  us  start  with  the  equation  that  we  are

considering, I am going to suppress the dependence on z and time of the pulse a here. So,

actually a means a of z, t, I do not want to write z and t every time ok. So, this is the

simple equation that you have please note that this pulse envelope a is a function of both

z as well as t. z of course being the distance along the fiber, which I am going to consider

it like this. Let us say this is the fiber, this is z equal to 0, this is z equal to L ok.

You can of course normally certain parameters, and obtain what is called as a normalized

pulse propagation equation. We are not going to do that one here ok. How do we solve

this equation well; how did we actually derive this equation. Well we kind of derived this

equation by a three step procedure. We actually said that you start off with the pulse

envelope right at z equal to 0, you have some a of 0, t. You then Fourier transform it,

because you want to study how the propagation of individual frequency components is

being you know affected by the fiber. So,  you Fourier  transform it  to obtain a  of  0

omega.

And  I  hope  that  you  remember  that  this  omega  that  I  have  written  is  actually  the

frequency deviation or in other sense that I am actually looking at the baseband evolution



ok. But, when you actually go and look at this beta 2 term you need to keep in mind that

this  beta  2  is  actually  parameter  that  is  measured  around  the  center  of  the  carrier

frequency or rather at the central frequency or the carrier frequency ok.

Anyway, so you start with the pulse in the time domain. So, I will call this as TD just to

indicate that this is in the time domain. This is in the frequency domain, and then what

we do we multiply individual  frequency components by this  term right.  So,  e to the

power minus j beta 2 by 2 omega square is known, but what else am I going to measure.

Of course, I should write z or you know z equal to L, which will cover the propagation

from input to the output.

But,  it  turns  out  that  numerically  when  you  are  solving  these  equations,  it  is  nice.

Because, otherwise numerically it will the numerical solutions will become unstable to

avoid that numerical unstability or instability what you do is you section up this fiber

into small sections of some delta z long ok. It is not required that you section them up

into equal parts, but it is usually easier to code that way, when you do it with equal parts.

And what you are actually looking at is how the pulse in the frequency domain, this

starts out at say z equal to 0. We look at z equal to delta z, and to do that one instead of

multiplying it by z, you multiply this one by delta z ok.

So, here you go you started off with pulse at z equal to 0 then propagated over a distance

delta z propagation in this case simply means that you are multiplying the phase factor

here. And every frequency component omega that you have in the frequency domain of

or the spectrum of the pulse will be multiplied by delta z. So, pictorially if I want to

depict  this  one,  this  was some launch pulse let  us say. After  going to  the frequency

domain, let us say it this was the spectrum. And these are all the different frequency

components that I have right. And each frequency component will be multiplied by this

phase factor e to the power minus j beta 2 by 2 omega square times delta z.

Now, what is the next step? After doing this, I need to take inverse Fourier transform.

When I do that in the time domain,  I obtain the pulse, which has now propagated a

distance delta z away from z equal to 0. And I know how it looks in time. And how do I

obtain what would be the output at z equal to L, I simply repeat this process of taking the

Fourier transform propagating through a distance delta z, and then taking the inverse

Fourier transform, again I do it, again I do it. So, I keep doing this one until I reach



certain steps. So, I reach say M step, where M is about L divided by delta z or maybe L

by delta z minus 1 does not really matter.

So, you need to repeat this step until you finish propagating through all the small delta z

sections such that once you have propagated through M such delta z sections, you would

have reached the final length L ok. So, maybe in that case M is actually equal to L by

delta z, it does not really matter ok. So, you can of course, you know given the values of

L. And you decide the value of delta z you will know what is the number of sections, and

then how many times you have to repeatedly follow this procedure.

Now, at this point, all  these procedures that we have written time domain, frequency

domain, and then back to time domain. They all have a problem in the sense that they all

depend continuously on t and omega right, but that is not how a digital computer would

work. A computer or a laptop or whatever that you have a computing device would not

recognize variables, which are continuous right. So, they will only recognize variables,

which are discrete correct. To deal with this problem, what we need to do is to replace

these continuous operations by discrete operations. What do I mean by that?

(Refer Slide Time: 22:16)

Well, I know a of 0, t has a certain expression. And you know, when you plot it is how

does it look, you would have plotted it with a continuous time t here. And this value of t

over this range would actually be infinity, because you can know you have t is actually

continuous  right.  But,  on a  computer  you can not  represent  that  entire  pulse in  that



manner. So, what you do is you actually sample the pulse ok you sample these pulses at a

sampling period of T s.

Alternatively, sampling rate of F s, how should I choose this sampling rate F s, well you

know that if I have a pulse right, then this pulse has a certain bandwidth, let us say B.

Then your sampling rate F s should be at least greater than 2 times B right. Of course, in

a general  pulse shape,  you would not  know what  is  the actual  spectral  width or the

bandwidth of the pulse. So, in that case you kind of do a hit and trial or a trial and error.

You assume a certain bandwidth, which is reasonable. So, if you have been given a pulse

of certain duration, you assume that the spectrum to the first order has a width of 1 by

duration. 

And then, you take the sampling rate to be at least twice of that. In practice, you will

have to over sample this one by a factor of 3 or 4, which means that in practice F s will

be at least about say 8 or maybe even more than that 10 times the duration or 10 8 times

the inverse of pulse duration ok. So, if the entire pulse is given which is say t second

pulse, then 8 by t is what we would actually take the sampling rate of this particular

pulse.

And of course, F s is equal to 1 by T s right. So, sampling interval and sampling rate are

inversely related to each other. These are very conservative numbers as I said ok. If you

have some idea of what is the bandwidth,  then you have to take the bandwidth into

account and sample the pulse sufficiently ok. Because, if you under sample, then you

will get into little bit of a trouble later on ok. So, it is little bit of a trial and error at this

point. But, once you have solved it with one or two values of F s, you will know what

value of F s can be considered to be optimum ok, so that is the first step.

So, you have to convert this a of 0, t, which is a continuous pulse into a discrete set of

numbers, which are actually obtained by sampling this one at intervals of T s. So, you

have actually create an array of numbers, which would be the sample. So, if these are the

samples, which are all taken at integer multiples of T s, and you would have created that

particular array.

Now, this  array  is  stored  in  a  computer.  And ready for  Fourier  transform,  but  on  a

computer I cannot take a Fourier transform, which will result in a continuous frequency.

I have to replace this continuous Fourier transform by a discrete Fourier transform. And I



can do the discrete Fourier transform numerically, efficiently by taking what is called as

FFT. FFT is Fast Fourier Transform that will allow you to go from discrete domain of the

pulse to the discrete frequency domain.

So, what we actually get after this FFT is not really this you know 0 comma omega.

What you will actually get is n omega s ok, where omega s is the sampling frequency.

So, you will actually get discrete array here ok, which would be the Fourier transform of

the input ok. If you have taken this original input to be of N-point array, then the FFT

will also be of the same N-point thing.

And then next step would be to multiply this one right, so you have to multiply this

phase factor. And multiplication by a phase factor is very simple. All you have to do is

you write down this e power minus j beta 2 by 2 ok, and delta z of course you know. But

omega is not really the actual omega, but this is n omega s; where n goes from say 0 to n

minus 1 or from minus n by 2 to plus n by 2 minus 1. So, whatever that is that is actually

that n omega s is what you are looking for; and it is not really omega s, but it is omega

square right, so that would be n omega s square.

In other words, you have the frequency array here ok. And once you have the frequency

array or the frequency resolution, then you find out those particular frequencies. And

then put  that  frequency here,  and that  is  where  the  change here is  right.  So,  if  you

initially take the carrier  e power j omega 0, t, then the actual frequency that you are

looking at will be the deviation frequency ok, but as long as you are working in the base

band do not worry about it.

You simply take the Fourier transform. And from the Fourier transform you multiply that

one with the phase factor. And this phase factor can be calculated beforehand, so that is

why, this is sometimes called as pre-calculated phase factor ok. And this pre- calculated

phase factor does not really change every time you run this algorithm. Because, once you

fix delta z, the frequency array is fixed. And all these things are also fixed.

And final step would be to replace the continuous inverse Fourier transform by discrete

Fourier transform inverse Fourier transform, which is implemented by what is called as

Inverse Fast Fourier Transform or IFFT. And when you do that,  what you get is  the

discreet array right, which would have now propagated over a length delta z. And this is

the array that you are going to get of course.



We are now going to go back, and then start the process again. So, FFT, so that you next

time, when you run it, the pulse would have propagated 2 delta z and then so on so forth

up to you have propagated M delta z, where M is the number of times or the number of

sections, you actually have considered propagation of the fiber. So this method where in

we start  with the input  in  the discrete  form, because that  is  what  the computer  will

recognize and then take the fast Fourier transform, which is a way of discrete Fourier

transform,  and  then  multiplied  by  the  phase  factor.  Then  take  the  inverse  Fourier

transform to obtain the pulse in that time domain back. And then continuously repeat this

process, until you go to the output is called as beam propagation method ok. 

This is applicable for equations that we have discussed the pulse propagation equation.

And when you have to consider beta 3, then you know the situation will be slightly

different. And we will discuss that effect of beta 3 sometime in the later modules ok.

Thank you very much.


