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Hello,  and welcome to NPTEL MOOC on Fiber-Optic  Communication  Systems and

Techniques course. We will continue in this module, what we had started in the previous

module that of analysing the steps of a single mode fiber or rather steps of a step index

fiber, that is fiber whose refractive index profile was constant inside the core having

value n 1 and outside the core that is in the cladding which based on it all the way to

infinity on both sides would essentially have the refractive index n 2 which is less than n

1. 

And, following our systematic procedure of understanding or deriving the modes of the

waveguide or the fiber; we had stopped at a certain point, where we had derive the wave

equation for the z component of the electric field.
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Of course, you could derive a similar equation for the magnetic field as well and that

resulting partial differential equation because it would couple the r and phi terms in the

circular  cylindrical  coordinate  system that  we  have  chosen,  the  solution  was  not  so

straight forward. So, to solve that a differential equation the partial differential equation



we started employing the method called as method of variable separation or sometimes

called as variable separable method. 

The essence of variable separable method is to actually write down the unknown solution

as the product of functions of individual coordinate. For example, since we know that E z

depends on r and phi, it is z dependence is already very well known to us. So, we wrote

E z of r phi as R of r phi of phi, where R of r is exclusively a function of the small r itself

which is the radius and phi being the azimuthal angle the capital phi of phi is just the

function only of this phi. And, we substituted this one into the wave equation for E z and

at after simplifying that we actually derived this particular equation at which point we

had stop because we did not have sufficient time to discuss the solutions.

Now, that is what were going to do in this module in this module we will first understand

what this differential equation is what are the solutions of this differential equation and

once we have the solutions of this differential equation which is essentially giving us E z

because H z also satisfy the equation which is very similar in this form except maybe

different amplitude constants. So, the form of the solution would remain the same. So,

the solution that we are going to discuss now will be applicable both for E z and H z and

you know that once E z and H z have been obtained, the solutions of E z and H z have

been obtained then all the other field components can be readily given by the various

combinations of E z and its derivatives H z and its derivatives right.

So, go back to this equation that you are seeing now and you have to understand that this

equation will have to two such equations; one for core and one for cladding because the

refractive index in the core is different from the refractive index in the cladding. Inside

the core n will be equal to n 1, outside n will be equal to n 2. If I were to say i equals 1

corresponds to core then n 1 will be the core refractive index, i equal to 2 correspond to

the cladding and therefore, n will be equal to n 2 and that is why I have written this k 0

square n i square minus beta square. Beta is of course, the unknown propagation constant

which you are trying to find out.

So,  now you see  this  equation,  right.  I  will  take  another  colour  pen here,  and then

underline those terms which are functions only of r. So, clearly the terms which I have

underlined  here  with  a  blue  colour  are  functions  only  of  the  small  coordinate  r.  Of

course, I am assuming the beat is a constant it does not depend on any other coordinate



and of course, because we have assumed step index profile the value of n is independent

r and phi it is just equal to n 1 in the core and n 2 in the clad.

Now, this term which I am underlining with a different colour is a function only of phi,

ok. In arriving at this equation of course, I have kind of you know divided everything by

R and adjusted the equation such that I looked at I mean I get this kind of a functional

dependence. Now, let me do something I am going to rewrite this equation by grouping

all the terms which are functions of small r in one side and the functions of phi in the

other side and then what we will get.

So, I have r square R double prime by R, please note that R prime and R double prime

denote  differentiation  with  respect  to  r  only. So,  this  is  the  differential  that  you are

actually looking at. So, plus r R prime by R plus k 0 square n i square minus beta square

times r square plus phi double prime by phi equal 0. Now, I have two functions night. So,

there  are  three  terms  which  may  be  collectively  combined  into  one  big  brace.  So,

whatever that term that is here in this braces is a function only of r. So, I can change the

value of r I can go from core to cladding I can do whatever that I want to do with the

small  coordinate  r. The function or the terms that  have shown in this  bracket  would

represent only functions of that small coordinate r.

Similarly, what I would now indicate with another brace is just a function only of phi you

have to understand that r and phi are independent variables. They can change to whatever

value of the they can change over whatever the limits that they have. Of course, phi is

limited to typically from 0 to 2 phi which covers the one complete revolution around the

z axis, whereas, r can go from 0 to infinity at r equal to a u hit the boundary between core

and the cladding right.

But,  you have  a  term which  is  completely  function  of  r  you have  a  term which  is

completely function of phi and for all values of small r and small phi that sum of these

two functions must be equal to 0. The only way the, this can happen is when this is

separately  equal  to  some integer  and this  is  separately  equal  to  the  opposite  of  the

integer, correct. So, only when this phi double prime phi is equal to some constant I

mean and I have denoted that constant by nu square minus nu square or nu square plus

nu square in case you are looking at the dependence in terms of only function of r.



So, what we are saying is that the term which is function only of r is equal to a constant

and the term which is function only of phi is another constant, but this then the constant

with a negative sign as that of the other one. The reason because plus nu square minus nu

square the sum of these two will be equal to 0 for all r and phi and this nu square is

called as the separation constant,  ok. That is the reason why you call  this method as

variable separable method.

Because, we separate the variables by writing the unknown solution as the product of the

functions of individual  variables  and then when you look at  the resulting differential

equation you will actually have terms which are functions of only one coordinate, the

function for another coordinate the sum of these two will always be equal to 0 of course,

that is the original equation condition. And, because that has to be 0, these two terms

individually must be equal to constants, and further this sin of these constants must be

opposite to each other. So, that is the reason why I have chosen the separation constant to

have a minus nu square and plus nu square for the function which I have written as a

function of r alone.

Now, there is no reason as to choose this as minus nu square and this as plus nu square

you free to interchange them, but it turns out that if you choose in manner that I have

indicated then the solutions can be simplified, ok. Remember, the goal is not to keep

dragged in the mathematics the goal is to move forward understand how these functions

of r and functions of phi would look like because your ultimate interest is to find the

modes as well as the propagation constant, ok.

So, all the possible modes of the waveguide plus the propagation constant is what your

after. Anyway, now that I have these two equations individually I will separate them out

and write something like this I have phi double prime by phi equals minus nu square

writing it sometimes my nu does not really look like nu it may look like v please excuse

that please remember that this is nu. So, this is nu square.

So, this equation is essentially a second order differential equations so, nice homogenous

equation whose solutions as you can verify are given by e to the power plus or minus j

nu phi, right. Now, either I can choose e power j nu phi or I can choose e power minus j

nu phi, whatever the solution that I choose is perfectly fine, I mean I can let say choose e

to the power plus j nu phi for example. So, this is the solution that I will choose.



And, this point that you can actually have solutions which are e to the power plus j nu

phi or e to the power minus j nu phi will be exploited later when we discuss something

called as linearly polarized modes. There we will see that it is possible to you know use

this e to the power j nu phi and e to the power minus j nu phi in a specific manner to

combine and actually make the longitudinal components completely disappear. But, that

is a story that we will have to wait for another module, ok.

 For now I had the option of choosing e power plus or minus j nu phi I chose e power j

nu phi as my solution. I could as I told you equally well have chosen e power minus j nu

phi. Of course, you also realize that the solution could be cosine nu phi and sine nu phi

right or in general with some additional phase zeta these are the generalized solutions,

but I will not want to go to the cosine and sine form of the solutions because there are

little bit of problems with that one. So, dealing with exponential is much easier. So, I

have chosen e to the power j nu phi as the solution.
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So, that was about phi. What about r? Well, you had this equation, correct plus r R prime

by R plus k 0 square n i square minus beta square times r square is now equal to nu

square, correct. So, now, let me put this nu square to the left hand side and obtain a

slightly different equation, ok. So, I have r square R double prime I also do something I

will multiply the entire equation by R, so that this R which is in the denominator can be



removed and moved to the numerator here. So, I can write this as R and write this as R,

ok. So, please ensure that you understand the manipulation that I am doing.

So, now, I have r square R double prime plus r R prime plus k 0 square n i square minus

beta square minus nu square by r square times r square capital R equals 0 and R double

prime is basically d square R by d r square and R prime is d capital R by d r. So, this is

the equation that I now have which we need to now solve, right.

So, the equation that we now have has to be solved. It is a second order differential

equation alright, but this is a very special equation which has to be solved by what is

called  a  series  methods,  something  that  you  must  have  studied  in  your  engineering

mathematics courses. So, I will not go into the details of this differential equation, but

suffice to tell  you that this differential  equation is an example of Bessel ODE; ODE

stands for Ordinary Differential Equation. This is a Bessel ODE of order nu and because

we want solutions which are actually propagating inside the waveguide on inside the

fiber we take this nu to be an integer. 

Now, there are different types of Bessel functions the ones that are actually useful for us

will be called as Bessel functions of the first kind and Bessel functions of the second

kind of this particular thing. So, these are the different Bessel functions you must have

seen them. So, if this is some j nu of x, this is x, ok; x is the independent variable. The

function here will be nu equal to 0, the function here is nu equal to one the function here

is nu equal to 2 and so on. So, these actually remind you of damped sinusoidal waves

indeed for large values of x you can approximate this j nu of x as cosine x minus nu phi

by 2 minus phi by 4 divided by 1 by root x, ok. So, this can be written for very large

values which means far away from the origin.

So, the reason where we call is the this damped sinusoidal is because the exhibit the

oscillatory solutions and they have these oscillatory solutions are important because that

would correspond to standing waves inside the fiber which is precisely what we start of

hoping that we actually get to this type of a solution, because you want standing waves

inside the fiber and you want the evanescent or the radiating modes outside the fiber

core. 

So, this situation is very similar to the kind the slab waveguide situation. In the slab

waveguide also you had the standing waves because you know this waves were actually



getting reflected and therefore, creating an interference pattern inside the waveguide, but

the interference pattern created in the fiber is slightly more complex than the simple slab

waveguide that we have discussed and that standing waves are actually in the form of,

they are not in the form of cosine or sine waves there in the form of Bessel functions

which look like damped sinusoids, right.

So, x goes to a larger and larger value the oscillations look more like a cosine wave with

some phase shifts give or take. But, the amplitude drops because there is a 1 by root x

term out there. This 1 by root x is a very peculiar characteristic or it is not a peculiar, it is

a characteristic of assuming cylindrical waveguides because when electric field goes as 1

by square root r and the magnetic field goes as 1 by square root r together the product E

H which would be your pointing vector I am not writing the vector I am just giving you

the basic idea will go as 1 by r, right. So, this is something that we have the characteristic

of a cylindrical wave guide system, ok.

So,  this  is  one type of  Bessel  function  and this  Bessel  function will  be the solution

provided k 0 square n i square minus beta square is greater than 0, ok. We want this

particular term when k 0 square I need to also include argument with nu square, right.

So, minus nu square by r square is positive. So, we will have this kind of a solution

which is called as Bessel first or I mean first kind Bessel functions of order nu is the

solution provided this k 0 square n i square minus beta square minus nu square by r is

positive quantity.

Now, let us introduce two symbols the symbol that you know earlier which we called as

kappa f which was the transverse wave number this time I will call kappa square as k 0

square n 1 square minus beta square. Why? Because beta is bounded by two values; it

can utmost reach k 0 n 2 at which point the corresponding mode actually reaches the cut

off,  and it  can go at  most up to k 0 n 1 in which case the transverse wave number

becomes 0 and beta value will be anywhere in between, ok.

So, these allowed values of beta are discrete as we have seen earlier and the transverse

wave number can go to a minimum to a maximum minimum of 0 and. So, minimum of 0

at when beta equals k 0 n 1 and a maximum of k 0 square n 1 square minus n 2 under

root when beta reaches k 0 n 2 and gets cut off, ok. This we have seen earlier in the slab

waveguide exactly same procedure I am using the same notation as well in fiber optic



literature it is more common to call this kappa square as u square. But, I have avoided

that because I want you to constantly remember the significance of this kappa.

(Refer Slide Time: 17:45)

And, of course, since kappa f has made it entrance the next one that to define would be

gamma square which is beta square minus k 0 n 2 square with the stipulation that gamma

square be a positive quantity, which means that beta is greater than or at most equal to k

0 square n 2 square. So, this gamma is the decay constant as you have seen you know

and it would be something that would describe the evanescent field moving away from

the core, ok. So, the so you have the core the fields are guided by here, but the field

component that is in the cladding would essentially go and radiate away, and there is

another relationship that you must know which is kappa square plus gamma square is

given by k 0 square n 1 minus n 2 square, ok.

This is very important because kappa can go from 0 to kappa max, ok. When kappa is

equal to 0 gamma is at its maximum value the sum of this two will always be constant

assuming n 1 and n 2 are constant. So, when kappa is 0 gamma is maximum, ok. So, at

this  point  gamma  is  maximum  and  the  field  essentially  decays  rapidly  outside  the

cladding, when gamma is not maximum it is lower than the field decay will be much

slower, but when kappa is you know at it  is value of 0 the field is decaying outside

rapidly, but as kappa rises the field outside will be decaying much less rapidly. So, this is

something that you have to keep in mind. 



Now, this was one Bessel function that we talked about. The other Bessel function that

will be the solutions outside the cladding which you want anyway is because you are

looking at you know evanescent waves are called as the Bessel functions of the second

kind. These are the second kind and order nu, again the order is nu and I have list k to

denote the second kind some authors use y, some authors use n.

So,  these  are  all  different  notations.  So,  please  do  not  worry  about  those,  what  is

important to note is the shape of this orders. right. They are all exponentials. But, they

are all exponential which are actually going towards infinity and at x equal to 0 and then

drop  off  exponentially.  Anyway, this  is  fine  for  us  because  if  you imagine  that  the

solution outside or inside the core is kind of an oscillatory solution. At this point you

need to have an exponential decaying solution which is provided by fitting one of these

orders, right.

So, if this is the my optical fiber core, then the solution would look like this and outside

it  has  to  decay out,  right  and these points  at  which we are going to merge  the two

solutions one from the core which is oscillatory and the other one in the cladding which

is decaying are called as boundary matching, and we will have to do lot of boundary

matching here. So, what sort of boundary matching that we need to do? We need to do

boundary matching of E z  component,  H z component,  E phi  component  and H phi

component. So, you have match this four components because all these four components

are tangential component at the boundary r equal to a. 

So, these solutions k nu of x also have a asymptotic form, that is for large values of x

they go something like 1 by square root of x therefore, at x equal to 0 clearly this is

going off to infinity and then the decay with some constant gamma times x. This gamma

need not be the same gamma, but it could be the same gamma in case you are applying

these equations to fiber. So, you have these two type of Bessel functions; just for record

there are other categories of Bessel function, some of them go like this. These are clearly

not allowed solutions because they are not going out alright. So, we have only Bessel

function of first kind of order nu second kind of order nu as the solutions for E z.
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So, now I can write down the solution for E z in the core as a function of r and phi as j nu

some constant amplitude A; so, A j nu kappa r e to the power minus or rather plus j nu

phi, ok. Of course, if you want you can also put in e power minus j beta z into this one it

is up to you and then the solution for H z because E z and H z satisfy the wave equation

of the same nature the solution will be with the constant b here same j nu of kappa r e

power j nu phi e power minus j beta z and then you have solutions.

So, these are the solutions for r less than or equal to a, meaning this are the solutions for

core region of the fiber. Whereas the solution for the cladding region will be again some

constant C and instead of j nu which is oscillatory K nu which is exponential. So, K nu

of gamma r gamma r e power j nu phi e power minus j beta z. For H z the solution will

be the same equation accept that the constant instead of C it will be equal to D. So, this is

valid for r greater than or equal to a at r equal to a you need to match E z I know H z, E

phi and H phi to get this expression E phi and H phi you should refer to step 2. For

example, E phi is given by minus j beta by kappa square and then I have 1 by r del E z by

del phi then I have minus j or rather plus j omega mu divided by kappa square del H z by

del r, ok.

So, clearly if you know both E z and H z you can use the equation for E phi similarly you

can obtain an equation for H phi these are all coming from step 2. So, I am hoping that

you have done that exercise. So, that you would you are not seeing this equation for the



first  time you must  have  been seeing  these  equations  earlier  as  well  because  of  the

exercise that you solved. So, minus j omega epsilon by kappa square del E z by del r and

then you have minus j beta by kappa square r del H z by del r. Notice that you are going

to  differentiate  with  respect  to  phi  and  differentiate  with  respect  to  r  when  you

differentiate it with respect to phi the assume solution with respect of phi you will pull

out plus j nu, and when you differentiate with respect to r your differentiating Bessel

function of the first kind, of order nu and Bessel function of second kind of order nu and

these derivatives are not so simple. In fact, there are set of relations called as recurrence

relations which are valid for Bessel functions which allow you to replaced its derivatives

in terms of Bessel functions or superposition of Bessel functions of different orders. 

So, I would actually urge you to have a brief look at what this Bessel functions are go

back  to  your  engineering  mathematics  textbook  and  then  look  at  the  recurrence

relationships,  look at  how Bessel  functions  are  actually  solved or  Bessel  differential

equations solved to really understand what we have done. Alternatively you can go to

one of your software packages in MATLAB and print out a few values of this Bessel

functions or few plots of this Bessel function for different orders and generate pictures

from your side and then look at what happens to these pictures as you change some of

the orders or some of the properties or the variable range. 

So, I hope that you done all that or you will do all that and once you have done that and

also derived or made appropriate derivations of del E z del phi del H z by del r you will

be able to find expression for E phi and H phi and these expressions E phi at r equal to a

must be continuous in the core and cladding. Of course, you may I ask what about the

equations are these equations valid for both core and cladding? Not really, this is for core

and for cladding you replace kappa square by gamma square, ok. So, for cladding you

replace wherever you get kappa by gamma square ok.

So, please note that this gamma square or not part of this expressions I have, that is the

reason why I am writing them in or different colour, ok. So, this gamma square I have to

be written in place of kappa square. So, when you write the fields in cladding so, this is

the field for cladding and the black expressions or expressions written in the black colour

are the expressions for fields in the core.
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Now, this is an exercise that I am going to leave for you that is deriving the value of E

phi or rather expressions for E phi H phi and then using the expression E z H z write

down the boundary condition. You will actually get four equations. There will be four

unknowns in your equation A, B, C and D. And, you can put all the equations in terms of

a matrix, ok. I will write down the matrix it is important, but I would not derive the

matrix which I will leave it as an exercise for you. You are going to use this matrix in the

next you know module to actually discuss the solutions. 

So, you can see that this mattresses are of course, with an argument kappa a because that

is the point where you are matching the fields what r equal to a is very o match the fields

and  these  are  the  expression  that  you  are  that  you  will  get.  So,  these  are  not  easy

expressions in the sense that they are tedious to write down and then solve, but once in

awhile if you do it it would actually be better.

So, you have third row given by this one. So, note the appearance of j nu prime let me

also simplify this equations by removing the argument of kappa a from everywhere, ok.

It is understood that the argument is either kappa a or gamma a if it is associated with j

nu or j nu functions that is j nu functions would always be associated with an argument

of kappa a, k nu would be associated with an argument of gamma a.

So, with that is the final equation or this one you are going to get j mu by k nu prime.

The last row is this is beta nu. This equation, please verify that you actually written them



down correctly. In the next model we are going to discuss the solution of these equations

and then discuss the properties of modes of the step index optical fibers.

Thank you very much.


