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Further discussion on slab waveguides

Hello  and  welcome  to  NPTEL  MOOC  on  Fibre  Optic  Communication  Systems  and

Techniques.  In  the  previous  module,  we  discussed  a  systematic  procedure  to  derived

properties of modes of a slab waveguide, we first applied that systematic procedure for a

metallic waveguide and since metallic waveguides are not used at optical frequencies, for the

reasons that we mentioned, we then discussed slab waveguides and then we showed that the

expectable  modes  of  a  slab  waveguide  can  be  partitioned  into  transverse  electric  and

transverse magnetic mode.

Of course, in a real world scenario, when you launch on mode all these modes can excite, can

be excited depending on how you launch a particular mode, some of the mode launching

procedures for fibre optic, optical fibres were going to consider later on. We will not consider

such a mode launching; you know discussion for the slab wave anyway. We saw that when

we  solved  the  equations  right.  So,  we  obtained  a  certain  equation,  which  related  the

transverse wave number kappa f and the decay constant outside the slab waveguide gamma

into a transcendental equation right.

So, this relationship as we told, you was what is called as the eigenvalue equation, because

hidden in this kappa f and gamma is the propagation constant beta, because kappa f and beta

are related to each other. Gamma and beta themselves are related to each other by solving this

characteristic equation, we can obtain what is the corresponding propagation constant of that

particular mode, which is propagating in a given waveguide.

The systematic procedure also had this advantage, that in addition to just knowing the value

of beta, which anyway you could have found from the transverse resonance condition, you

now, also  have  the  capacity  to  actually  look at  how the  modes  themselves  look  like  or

essentially,  what  is  the  functional  dependence  of  the  modes  of  the  different  components

electric  field  and  magnetic  field,  corresponding  to  whatever  components  that  go  for  the

transverse electric and transverse magnetic modes right.



We did all these analysis only for transverse electric modes for transverse magnetic modes,

the steps are very similar, except that for the transverse magnetic mode you start with the z

component  of  the  electric  field  and then  derive  the other  components  in  terms  of  that  z

component,  solve  the  wave  equation  for  e  z,  obtain  a  characteristic  equation,  find  the

propagation constant and from the relationship of e z with other. Other components you will

then be able to calculate the dependence of the modes on the coordinate x ok.

What I want to do now is to kind of reconsider that characteristic equation tell you a couple

of properties of that one and then, show you couple of methods to solve that transcendental

equation, one method would be what is called as the numerical method. Numerical method is

fastest,  gives  you accurate  answers,  much more than  what  you would get,  but  for  many

problems or at least, until you know, the advent of computers, people used what is called as

the graphical approach?

For most cases, graphical approach does yield very close answers to numerical and it is far

for simpler to use the graphical approach and of course, it also provides you in addition to

just the number. It also provides you the intuition as to which mode starts where and which

mode ends, or what is the, dependence of a given mode with respect to the frequency or

wavelength, which is very important when your analyzing the pulse propagation.
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Through this slab waveguides we start from something that we already know, what I am

going to do now is just to recapitulate those equations, which you already have seen earlier



so, for that transverse electric even modes right. So, this is for the transverse electric, even

modes, when we say even modes what we actually mean by that? Is that, if you were to look

at  the  x  axis,  you  know  the  slab  waveguide  of  course,  is  propagate.  The  modes  are

propagating around the z axis, but is bounded by two planes right ok.

So, inside this plane you have n 1, outside this plane you have n 2 and this plane will be 1

plane kept at minus h by 2.The other plane is kept at plus h by 2 as we have seen. So, you can

see that, I have kind of only being considered, the considering the x component in this one,

because along the z component, you know that whatever the basic mode, it would simply

propagate along the z axis.

So, when we say even modes, what we mean is that from the centre of the axis which of

course, will be from the centre of the axis, which will be at x equal to 0, if you were to plot

the modes you would have modes in the form of cos kappa f h and we have seen that this

kappa f has to satisfy a certain relationship in order to. So, we need to solve this equation to

find out kappa f, but once you find kappa f, then it is possible for you to sketch this modes

right.

This is not kappa f h, this is kappa f x inside the film and outside the film or that is outside

the slab, you have decaying modes right. So, you have either e power plus gamma x, which

would of course, decay outside or in the cover region, because x is positive in that region.

You will have e power minus gamma x for that one and you have e power plus gamma x for x

less than minus h by 2, which essentially is the substrate and please remember all are analysis

has been done for what is called as symmetric waveguide.

Symmetric waveguide means n 2 on both sides is the same ok. We will mention couple of

points  about  asymmetric  modes,  later  on.  But  for  the  symmetric  modes  that  we  have

considered,  we  have  done  a  fairly  systematic  analysis  to  obtain  the  equations,  the

characteristic equation. So, as I was saying what is an even mode for us? An even mode is

one which has cosine dependence, because as the mode changes you know it would be cos

kappa f x.

If we did not have this planes at plus h by 2 and minus h by 2, then this mode would actually

have gone and become a cosine like this correct, but unfortunately that is how, that is not

possible,  because you have this planes, which will  stop your cosine function.  Just  at  this

boundary right, at this point, it would have stopped.



Now, we have seen that, when we apply the boundary conditions what essentially we are

doing is to match the fields, which would be decaying outside the film and at the point where

at x equal to h by 2, where the film meets the cover or at minus h by 2, where the film meets

the substrate, this decaying, exponentially decaying solutions, must smoothly merge with the

solution in the film right.

So, you can see that there is a single maxima here and this essentially is what is called as the

fundamental mode of the, fundamental TE mode of the symmetric slab waveguide. So, all

that we did the complicated math that went into the systematic procedure was to essentially

get this point matched.

So, this was the matching condition that we had to impose by all that mathematics, but what

usually was happening was, you had a field in the film and then that would smoothly change

to a decaying field in the cover or in the substrate higher order, TE modes are equally easy to

sketch  or  probably difficult  to  sketch  depending on how good you are with your  cosine

functions.

So, let me try and you know a sketch that one. So, this was half cycle. So, the other solution

that might be possible is this one right. So, in this case I have, one half cycle, another half

cycle.  So,  actually  I have and almost complete  cycle  here,  but then the field must decay

outside. So, it is not really going over nicely. So, please excuse that one, but the field outside

would still be decaying of course, the decay rate depends on what is the value of gamma.

So, in this way you can actually build up higher order modes. So, this could be called as TE 0

mode,  this  could be called  as  TE 2 mode,  you know in that  way you can actually  keep

building up your modes right. So, this is something that we have seen, in the previous class,

but the physical picture, you might not have seen. What would be call as the odd modes, the

odd modes would essentially be like a sin kappa f x right. So, they would actually go like

this.

So, you have the odd, this one and then outside it would decay in the substrate as well as in

the cover region. So, this would be the TE odd modes. I am not now, nice in sketching all

these things,  but  it  is  essentially  cosine  and sin functions  outside,  it  is  the exponentially

decaying functions. So, if you can, you know use MATLAB or any other, software that you

are comfortable with, you can actually keep sketching all this, modes.



Except of course, that you need to know what is the value of gamma and you need to know,

what is the value of kappa f of course, this can be found by finding beta right, but beta is

actually hidden in this equation, what was the equation let us complete this tan kappa f h by 2

was given by gamma divided by kappa f, this is for the TE even modes and for the odd

modes.

The  left  hand  side  will  say  would  essentially  remain  the  same,  but  the  right  hand  side

becomes minus kappa f by gamma for the TE odd modes ok. In both cases the solutions are

not simple, because you have a transcendental equation, for the TM modes the left hand side

essentially is the same. So, you have tan kappa f h by 2 being equal to n 1 square by n 2

square gamma by kappa f and this would be for the TM even modes and a minus n 1 square

by 2 square kappa f by gamma for the TM odd modes.

Now, you can actually see that the right hand side is essentially same as the case for the TE 1,

but these values are slightly larger corresponding to the TE case, because n 1 is usually larger

than n 2.Of course, you need that, scenario, because you want waves to be guided in the film

region. So, for n 1 being greater than n 2, n 1 square by n 2 square will be greater than 1and

therefore, this term, that you have here right. So, n 1 square by n 2 square gamma times

kappa f is slightly larger than gamma by kappa f of the TE modes.

So, now I have not derived the TM even and TM odd mode characteristic equation I will

leave that for your consideration and now, what I want to do is to considered one of this

equations, because the procedures for the other equations would essentially be the same. So, I

want to consider one of these equations which I will consider for the transverse electric, even

mode and I want to solve this equation ok.

So, how do I solve this equation, my goal to solve this equation would be to find out beta, but

I am not going to do this in a straight forward manner that is I am not going to find out the

value of beta, but I will first find out the value of kappa f, which satisfy these two equation. I

express everything in terms of kappa f and then I will be able to compute beta, because the

relationship between beta and kappa is, kappa f square plus beta square equals k 0 square n 1

square.
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So, now, my job of course, would be to express gamma in terms of kappa, that is rather very

easily done, because gamma square at least is given by beta square minus k 0 square n 2

square of course, beta square is nothing, but k 0 square n 1 square minus kappa f square

kappa f will be treated as the variable, in this equations.

So, minus k 0 square n 2 square as it is. So, you can group the terms and then essentially

obtained  gamma  in  terms  of  kappa  f.  So,  now,  you  can  substitute  for  gamma  in  this

expression ok, in this expression is substitute for gamma kappa f anyway is kappa f on the

left hand side, you have kappa f h by 2 just to consider the solutions, you might want to scale

up the right hand side as well by multiplying, by h by 2 on both sides.

So, on the right hand side you have, gamma kappa f h by 2 divided by kappa f h by 2.This is

just to you know kind of replace all of those variables by kappa f h by 2 ok, that is all I am

trying to do here, you can even do that by writing. This h by 2 into square root operation for

gamma, because gamma is as we have seen from the above equation will be k 0 square n 1

square minus n 2 square minus kappa f square.

So, when you take h by 2 inside the variable out there or inside the square root, this becomes

h by 2 square, this will be h by 2 square right and then denominator is essentially kappa f h

by 2. So, what you have is a solution in which I can treat kappa f h by 2 as the independent

variable,  because  all  the  equation  out  there,  I  mean  the  equation  that  we  have  written

essentially depends on kappa f h by 2 ok.



So, what is  the method of solution well,  you can do a numerical  solution.  So, how do I

numerically solve this equation, first I will figure out what is the minimum and maximum

value of kappa f, what would be the minimum value of kappa f well the minimum value of

kappa f will be when you remember, this is a triangle right. So, there is a beta here, sorry that

is the transverse thing.

So, this is kappa f, this is beta and together is the incident wave vector or the wave vector

inside the film, which is kappa 0 times n 1. So, you can actually, have the length of, kappa f

becomes 0, at which point; k 0 n 1 will be exactly equal to the propagation constant beta

right. So, if you start shrinking this height right then k 0 n 1 actually falls on to beta1, the

projection of k 0 n 1 will then be exactly equal to beta, when kappa f, which is the height of

this triangle will be equal to 0.

So, that is the minimum value that one can actually have. So, the minimum value of kappa f

is actually equal to 0 right. What about the maximum value of kappa f, well we know that

beta has to be there within say k 0 n 2, write a minute has to be greater than or at most equal

to k 0 n 2, when this happens then you are essentially into cut off of that particular mode.

Therefore, the minimum value of beta will be k 0 n 2 at which point kappa f max will actually

be equal to k 0 square n 1 square minus k 0 square n 2 square under root, you can rewrite this

one by taking k 0 out and then you have square root of n 1 square minus n 2 square. So, we

have determined what is the minimum value of kappa f; we have determined what is the

maximum value of kappa f and within this region or within this range is what we are actually

looking to plot this equation.

So, or numerically, solve this equation right. So, all that you have to do is you find out given

n 1 n 2 lambda. You can calculate from lambda k 0 value, because k 0 is basically, to 2 pi by

lambda  and  lambda  will  be  usually  specified  in  the  free  space  region.  So,  given  these

parameters n 1 n 2 lambda, I think these are the parameters that you need oh, you also need

the height of the waveguide.

Let  us  say  that  is  h,  then  what  you  have  to  do  is  to  first  determine  the  minimum and

maximum values of kappa f ok.
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Once you have determined that you write a code right. So, let us say you have kappa f being

assign you know some sort of an array, which you know you take some kind of, linear spaced

array from 0 to kappa f max. I am using 0, because that is the minimum value and you create

some 100 points or maybe 1000 points, depending on what points you want to create. So, all

that this has done is that, it has taken this range from 0 to kappa f max right.

This is kappa f max, what you want to do is to actually multiply this 1 by h by 2, because that

is your independent variable. So, you have this range of 02 h by 2 kappa f max and in this

range you basically, create some 100 points ok. So, this can be done numerically and then

numerically, obtain L H S, which is basically tan of kappa f h by 2.

So, you can of course, give a certain variables say z equals kappa f h by 2, in that case you

are simply calling this, routine in whatever the language that you have as tan z. Similarly,

what would be the right hand side? The right hand side is essentially, what we have seen

square root of. So, this is the right hand side here, right and kappa f h by 2 is what we have

called as z therefore, denominator is z here, numerator is z by 2 whole square.

Now, if you directly put z equal to 0 numerically, you will be having a problem therefore, you

do not normally start your vector at 0, but you actually start your vector at a small value. Let

us call that small value as epsilon ok. So, epsilon, epsilon may be at this particular point it

could be just a non zero value, it, it will not be very large value, because you will then be



moving away from the minimum value, but it will not be also so small that you will end up

with numerical errors.

So, you choose your value depending on your, you actually look at what you are getting from

your MATLAB code or whatever the code that your using to find out the appropriate value of

the small non zero value ok. Epsilon s right and once you have found that one you can, you

know write down all whatever that you had. For example, I mean you write down the right

hand side thing. So, k 0 square you had, I think and n square minus n 2 square minus z square

then there was h by 2 square divided by z.

So, you find out and z is the array that contains this value. So, these are the different values of

kappa f h by 2, which is your independent variable. So, you create the left hand side array, the

right hand side array and then what you can do is to find the points, where L H S is equal to R

H S. Now, equals is a very interesting condition therefore,  what you normally do is, you

subtract L H S from R H S and then say if L H S and R H S right, there are difference

between these two values is less than some predefined factor.

So, I will call this as p factor, if p factor then note corresponding kappa f h by 2 that would be

the value of kappa f h by 2 from which you can then calculate beta, you can calculate gamma.

What is a p factor? Let us say you are looking at, in numerical solutions you are looking at

the difference between two vectors x minus y and you want the error to be in the order of say

something like, one or 10 to the power minus 6.

So, this is of course, just my condition, this p factor could be any value that is dependent on

the  application  that  you have,  but  in  general  looking  at  the  range  of  kappa  f  and  error

difference of about 10 to the power minus 6 or 10 to the power minus 3 whatever, that range

would be sufficient right. So, once you have figured out that p factor then you can stop the

program and note down the corresponding value of kappa h by 2 and that could give you beta

versus gamma.
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So, this is the numerical way of solving for the characteristic equation that will give you the

number without any doubt. It will give you the number, but it does not give you the, you

know what is that, the physical intuition has to what is happening right, to get the physical

intuition. We go back to the equation. Here again, I am going to write down everything in

terms of kappa f, but please remember that you know what is gamma times h by 2. So, it is all

lengthy expressions.

So, I do not want to write that lengthy expression, but anyway I have written that one, that is

why I written down this as gamma h by 2. So, substitute for gamma here, this is gamma. So,

you can substitute it here, I mean get that lengthy expression that you have.

Now, the graphical approach is actually very interesting, what it does is that you plot the

values of you know the left hand side and the right hand side. So, I define z right as kappa f h

by 2. I have defined this one right and then I am now, going to plot this tan kappa f h by 2.

So, how is the function, be a function of z like this where z is kappa f h by 2 well at 0 at z

equal to 0 tan function will be 0, but then it increases steadily and of course, goes off to

infinity at pi by 2.

So, when kappa f h by 2 equals or nears pi by 2, the corresponding value of tan function has

actually gone up 2 infinity. It kind of asymptotically goes of to infinity then of course, as you

increase this value of kappa f h by 2 further, it is start at pi by 2 and then goes through 0 at pi

and then goes again back to infinity at 3 pi by 2, this is pi. So, this is pi and then you can keep



moving. So, how far do I need to move this one well, I know what is kappa f max correct, I

know this kappa f max beforehand.

So, all have to do is to take the argument of z from 0 to kappa f max times h by 2right. So, let

us say kappa f max h by 2 happens to be at this point ok. I am just basically, taking some

random numbers, but in the exercises, you will actually be getting the correct value. So, you

can go back and put the exact value of kappa f max h by 2 here and then complete this

problem or complete the understanding of this one.

So, let us say this kappa f max h by 2 happen to be here ok. So, all this region beyond this is

really not important for us. So, you can scratch this out or we can remove that one. Now, let

us look at the right hand side, what is the right hand side look like, when kappa f h by 2 or z

is 0. Right hand side actually shoots up, because numerator will be finite, but the denominator

will be 0. So, the right hand side shoots up. So, as you move from kappa f h by 2, you will

actually see that it starts from infinity and then starts to go to 0 like this.

Of course, the rate at which this falls depends on what values of n 1 n 2 and lambda that you

taken, but no matter what it is, it starts here at near 0 and then as it move goes down to 0 that

is clear that the right hand side and left hand side have to cross at a particular point and this

crossing point is the solution the corresponding value of kappa f h by 2 from which you can

easily find out, what is the propagation constant beta. So, this is what we would call as the

fundamental mode and this mode happens to be the TE 0 mode.

What would be the situations for the TM even modes ?Remember, for the TM even modes

are right hand side is basically, n 1 square by n 2 square and then the corresponding gamma h

by 2 by kappa f h by 2 is essentially, the same thing right. So, all you have to do is to now,

take the right hand side and then draw another curve, which would be slightly away from this

one. So, it would actually, you know depending on how far n 1 and n 2 are, but it would

actually be slightly away like this and it will also go down to 0.

It starts at infinity and goes down to 0 and you can see that the mode is just around the TE

mode. So, this would be the TM mode and this would be the TE mode ok. These are the even

modes right. How about the odd modes? Well, for the odd modes right, you will have to start

with minus kappa f h by 2 by gamma h by 2 correct. So, because there is a minus to the odd

modes, actually occur in the fourth quadrant and, because the numerator is kappa f h by 2.



They would actually go something like this right. So, it will not touch the first branch here do

not  worry  about  the  points  being  touched  here,  that  is  not  of  consequence.  So,  the  first

intersection happens in the region when kappa f h by 2 is greater than pi by 2. So, this would

be the first TE odd mode ok.

Similarly, for the TM even mode, you will have to start somewhere here and probably meet

or maybe you have to start somewhere here and then probably meet here. So, this correspond

to the TM odd mode ok. Again,  please note how closely this TE even and TM even are

situated depends on the index values of n 1 and n 2.

In fiber optics n 1 or in optical fiber n 1 is very close to n 2.therefore, there ratio is almost

one,  which means TE and TM modes are  kind of degenerate  that is  they have the same

propagation constant where has in an integrated waveguide of which slab waveguide is an

example, n 1 and n 2, contrast is usually larger. So, these two modes are not the same, but

they are slightly different. So, they actually are to different modes in usually, in the case of

for integrated optical circuit.

So, we have seen how to go about solving this characteristic equation for, you know in the

graphical method or in the numerical method, there is one additional method, which is again

graphical method, which, in which we instead of considering, kappa f and the corresponding

values of beta.
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What to do is, we normalize these values by defining certain values called as b, which is

essentially defined as n effective square minus n 2 square divided by n 1 square minus n 2

square and then we define v as k 0 h square root of n 1 square minus n 2 square, sorry, b is

basically square root of this 1.

I  forgot the square root and then from the transverse resonance condition,  you express a

transverse resonance condition in terms of v and b now. The transverse resonance condition,

if you remember was 2 kappa f h minus 4 phi TE for the TE modes being equal to 2nu h,

where nu was the integer. As we have seen earlier  right and phi TE was essentially, tan

inverse of gamma by kappa f correct.

So,  you can actually  express  with the  help of this  v and b,  you can transform the TRC

equation, which would have dependent on gamma and kappa f into an equation, which is

dependent only on v and b and the universal graph that you can actually plot means that you

do not need to worry about which waveguide that you are actually calculating.

You can calculate this normalized way and then apply it for your waveguide, you can actually

scale this value. So, this b versus v curve, which we will see for fiber optical, fibers as well

would look something like this. So, you would have, TE modes and then you have the next

group of modes like this and then the next group of modes.

So, given the parameters you can actually first find out, what is the corresponding v number

for your waveguide and from there, find out what are the different propagation constant for

different modes. We will discuss this when we talk about optical fibers in more detail.

Thank you very much.


