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Transverse resonance condition for slab waveguides

Hello  and welcome to  NPTEL MOOC on Fiber  Optic  Communication  Systems  and

Techniques course. In this module, we continue the discussion of slab waveguide and if

you  remember  at  the  end  of  the  previous  module  we  wrote  a  condition  called  as

transverse resonance .condition.
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Where this transverse resonance condition is given by 2 kappa f times h minus 4 phi TE

equals 2 times nu pi or other nu times pi where nu is an integer.

So, the value of nu is usually taken to be positive integers. So, it is nu equals 0, 1, 2 and

so  on.  Each  value  of  nu  satisfies  a  condition  and  then  gives  the  different  value  of

incidence angle theta 1. So, it will not be a continuous value of theta 1 from say being

right at the critical angle to all the way up to pi by 2 that we have.

So, not all these angles right launched at these angles will be guided by the waveguide.

Although each of them will experience total internal reflection, but because they do not

satisfy the transverse resonance condition many of those angles will actually experience



what is called as destructive interference and eventually die out ok. Only those specific

values of theta you know maybe this  angle,  this angle,  this angle which satisfies the

transverse  resonance  condition  will  survive.  And  this  transverse  resonance  condition

which we have written here relates all these parameter.

So,  it  relates  n  1  which  is  the  refractive  index  of  the  film n  2  the  refractive  index

surrounding the film. The angle of incidence theta 1; the wavelength of light lambda and

h because this h will be present is part of this one right the TRC. The sign of this 2 kappa

f h is opposite to 4 phi TE and this point will be made clearer when we discuss the

electromagnetic wave theory of slab waveguides or at least indicate the electromagnetic

wave theory of the slab wave guide.

So, for now just  remember that  the phase shift  that  will  be experienced along the x

direction, which is captured by the first term will be opposite to the phase shift that is

experienced  by  the  reflected  light  or  reflection  phase  upon  reflection.  But  these  2

together should be equal to some integer multiple of 2 pi ok. 

Now let us write down this equation slightly in different form; assuming condition that

nu is equal to 0 ok. Or you could assume the condition that nu is equal to 0 2 4 and so on

which we call as the even modes of the solution ok. It is even because the value of nu

which is an integer is taken to be an even number ok. So, it is 0, 2, 4 and these can be

easily simplified for the fundamental case of nu equal to 0.

So, when nu is equal to 0 the right hand side of TRC will be 0 and on the left hand side

what I have is kappa f h is equal to 2 times phi TE, but I also know what is phi TE which

is ratio of gamma to kappa f correct. So, this we have seen in the previous module.

So, this would be equal to 2 times tan gamma by kappa f this is not tan, but this is tan

inverse. So, this is 2 times tan inverse of gamma by kappa f; so, put the tan on the other

side after dividing both sides by 2. So, the condition that you would have is that tan

kappa f h by 2 must be equal to gamma divided by kappa f ok.

So, this is the condition for the simplified condition for not only nu equal to 0 although

we derived this one for the case of nu equal to 0, it is true for all even modes ok. So, for

all  even  modes  the  resonance  transverse  resonance  condition  can  be  simplified  by

writing tan kappa f h by 2 equals gamma by kappa f.



Now let us consider what happens when theta 1 is equal to critical angle theta ic what

happens to the value kappa f? Kappa f will be k 0; n 1, remember kappa f was actually k

0 n 1 cos theta ic right it was cos theta 1, but theta 1 is now equal to theta ic. And what

about beta? Beta f equal to k 0 n 1; sin theta ic.

But I know that under the total internal reflection; the critical angle is actually given by n

2 by n 1 right, when n 1 is of course, greater than n 2. So, plugging in the value of n 1 sin

theta c from this equation; you will see that beta is actually become k 0 n 2.

And gamma which is given by square root of beta square minus k 0 square n 2 square ok;

it is n k 0 beta square minus k 0 square n 2 square actually becomes equal to 0. And

gamma was the rate at which this evanescent mode was actually decaying in the medium

which is outside the film right.

So,  this  was  the  direction  perpendicular  to  the  film  and  it  is  in  that  direction;  the

evanescent wave is actually decaying with an amplitude decay constant of gamma. So,

the wave outside this was e power minus gamma x and it now sees that with gamma

equal to 0 right at the critical angle when gamma is equal to 0; the evanescent wave does

not  really  decay  along  the  direction  perpendicular  to  the  film.  But  rather  remains

constant and of course, there is a propagating wave on the interface. 

So, the there is a propagating wave along the interface here, which would not decay at;

all it would remain constant ok. Only when we increase the angle theta 1 to a larger angle

corresponding;  I  mean  if  I  increase  the  angle  beyond theta  ic,  then  the  propagation

constant gamma will be non zero and it would then start to decay out the evanescent

wave actually starts to decay.

So, this is barely at the position of what is called as a cut off. So, cut off conditions are

always characterized by having this gamma, which is the decay constant outside the film.

Of course,  it  is  not  only on the  upper  interface;  a  same thing  happens in  the  lower

interface as well right.

So,  there  is  a  lower  interface  or  other  there  is  a  lower  interface  wave  which  is

propagating which of course, would decay in the direction downward and perpendicular

to the film right. So, whatever condition that we are talking about the upper interface is

same condition that will also hold for the lower interface because we are considering a



symmetric slab waveguide. So, cut off condition is when gamma actually becomes equal

to 0 ok.

So, gamma is 0, kappa f is k 0 n 1 cos theta ic; you can either you know convert this sin

theta ic into or rather extract what is cos theta ic from this equation or you can go to the

more defining equation or the relationship between kappa f and beta. 
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This is given by square root of k 0 square n 1 square minus beta square, beta at cutoff

will be k 0 square n 2 square right.

And kappa f will therefore, be given by k 0 times square root of n 1 square minus n 2

square ok. This n 1 square minus n 2 square under root is sometimes denoted by delta n

which indicates the refractive index difference between film and you know outside of the

film.

So, this refractive index difference is directly proportional to or at least will be the square

root of this refractive index difference or if I define the entire quantity of as a measure of

refractive index difference will be directly proportional to kappa f ok.

And what is kappa f? Or why is kappa f important? Because kappa f corresponds to the

way in which the waves are actually standing inside the film right. So, this is the film

region and this  is  the pattern that  would you would see transfers to  the direction  of

propagation and it is this pattern which would actually propagate along the z direction.



So, that is why kappa f is actually important. So, on unreal value of kappa f means that

this  pattern  would  also  be  real  and it  would  be this  pattern  which  would  propagate

further. So, anyway; so,  this  is  what happens at  the interface and what we have just

shown is that the condition for the cutoff for any particular mode would be that gamma

must be equal to 0 ok.

Now if I substitute the cut off condition into the transverse resonance condition for even

modes,  which  I  have  written  out  here  what  you  would  find  is  a  very  interesting

expression. So, what I have is tan kappa f h by 2 will be equal to 0 ok.

I will write c o to denote that this is a cut off that we are considering. So, if you think of

kappa f h by 2 as some variable x or maybe some other variables zeta and as zeta keeps

on increasing from tan right. So, at I mean if you were to plot tan of seta with respect to

zeta; this is how you would find.

So, at pi by 2 this would go off to infinity at 0 it would be 0 and then in the negative side

at minus pi by 2 this would be going away to minus infinity. Again it would stats from

infinity at this point right and then move through 0 at pi and then go off to infinity again

at 2 pi something like that or 3 pi by 2 not 2 pi 3 pi by 2.

So, this is what we get when you plot tan zeta versus zeta and what this equation is

asking  you  to  do  is  that  find  out  those  values  of  zeta  where  this  condition  can  be

satisfied.  So,  if  you were to go to  that  condition  that  condition is  satisfied here,  the

condition is satisfied here and the condition is satisfied at other places.

So, it is in fact, satisfied at all odd multiples or maybe not odd at even multiples as well;

so, at multiples of pi. So, this is this are the conditions for that kappa f h by 2; I mean tan

of kappa f h by 2 being equal to 0 because it goes through 0 at all these multiples of pi.

So, remember tan is actually sin by cos; so wherever sin goes to 0 and cos is non 0 that is

where tan actually goes to 0. Now, is this any helpful to us? So, let us look at this, so I

have kappa f h by 2 undercut off being equal to some integer l times pi ok, where l is an

integer and this integer is 0, 1, 2, 3 and so on and different modes that are possible with

this one is also written out here ok. So, I am now looking at this condition and all I have

found is that if I start giving different values of l; then I will actually obtain different



values of kappa f. But getting kappa f is not really my goal, but from kappa f I need to

extract the value of beta ok.

Because beta corresponding to that particular l will be the propagation constant, which is

actually  the  important  parameter  for  us;.  Because  that  will  tell  us  how the  wave  is

actually propagating along the film. So, this cut off condition that we have written can be

used to first find out what is kappa f; from kappa f you can find out what is the value of

beta l ok; because they are actually related by related with respect to each other. So, this

is the even condition that we have written and for all these values where this equation is

satisfied you obtain a set of modes ok; so, where this is a integer.

(Refer Slide Time: 12:33)

Now let us get back to the transverse resonance condition which we wrote earlier which

is kappa f h; I believe the condition that we wrote here was 2 kappa f h minus 4 phi TE is

equal to 2, nu times pi. So, let us get back to this condition and then write this way phi

TE is equal to nu h after dividing a sorry nu pi.

So, this is nu pi of and now we consider the case where nu is odd. So, for example, if I

consider the simplest case of nu equal to 1; then what will happen to this expression well

I will have kappa f h minus pi; the entire thing divided by 2 is equal to phi TE, but I

know that phi TE is tan inverse of gamma by kappa f. So, putting all  this condition

together I get tan of kappa f h by 2 minus pi by 2 is equal to gamma by kappa f.



Now you can use an equation which says tan of A minus B. So, simplify this expression

and when you know if you do not remember that this is the expression tan of A minus B

is equal to tan A minus tan B divided by one plus tan A times tan B with A equals kappa f

h by 2 and B equals pi by 2.

What you get here would be minus 1 by tan kappa f h by 2 which would be equal to

gamma by kappa f. So, this  is  gamma and you know interchanging all  this  you will

actually end up with another equation; this time valid for odd modes of this waveguide

that we have considered, which is tan kappa f h by 2 equals minus kappa f by gamma.

So, this is a condition that is valid for odd modes; odd TE modes because we have been

considering only TE waves. For TM waves you can derive similar expressions, but they

will be slightly different. So, there will be some n 1 square n 2 square also multiplying

this tan inverse thing ok. So, that I will leave it as an exercise for you, but look at this

expression again right now the cut off condition remains the same.

So, when I am considering the odd TE modes the cut off condition again means that

gamma has to be equal to 0 for cut off. But the moment I said gamma equal to 0 while

kappa f  being  a  finite  quantity, the  right  hand side  of  this  fellow becomes  equal  to

infinity right. And when will kappa tan of x go to infinity? When x goes to nor multiple

of pi by 2.
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So, the first time it happens is at pi by 2 then there will be another thing that happens at 3

pi by 2 and so on. So, these are the conditions; so, this will be the first odd TE mode, this

will be the second odd TE mode. Somewhere here you had 0 pi; so let me indicate that

one with different color. So, this is 0 pi and then you had; so after 3 by 2 you will have 2

pi and so on.

So, this would be the first even TE mode, this would be the second even TE mode and

this would be the third even TE mode and so on ok. So, these are the even modes for

which kappa f h must equals when kappa f h by 2 under the cutoff equals 0; then you

have the first TE mode even TE mode represent that one as TE 0 mode.

Then you have the first odd TE mode which you will write it as TE 1, then you have a

second TE even TE mode which is TE 2 and so on ok.

Similarly, you will also have TM 0 TM 1 and so on based again on the values of kappa f

h by 2.
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 So, if you look at the transverse resonance condition that we derived for the odd mode

and for the even mode and for the odd mode it is a reasonably simple way to derive that

one which we will do it later. So for the transverse resonance condition if you look at that

and then demand that for cut off; since gamma must be equal to 0 for cut off what are the



different values of kappa f and hence what is the different values of beta that you would

find?

You will be solving the equation remember the transverse resonance condition if you go

back and then look at it would look something like this; this is for the even TE modes

that we are considered. A similar equation of course, we will have to be written for the

transverse magnetic modes as well or the TM modes as well. And what you see here is

that  the  left  hand side is  a  periodic  function  and since gamma is  equal  to  0 in  this

particular  right  hand side 1 by 0 will  be quite  a  large quantity;  in fact,  it  would be

infinity.

And it does so, when this kappa f h by 2 goes through different values right. So, when

kappa f h by 2 goes to pi by 2 then you will find out that this is the first solution that is

available for us. So, sorry this is a transverse resonance condition for the odd modes that

we have written. So, for the even modes of course, is the other way round.

And what you see is that as it goes from say pi by 2 then you have a 3 pi by 2 and so on

there an infinite number of such solutions. The first solution that you will get will be the

one that we will call as TE 1 solution; sometimes I will use a superscript sometimes, I

will use subscript both essentially mean the same. So, do not worry about whether I have

used a subscript or a superscript.

In this module both are essentially same mode; they are representing the same mode.

And what you find is that this is the first odd mode odd because the number here is 1. So,

this is your first odd TE mode ok, the next odd TE mode also will be obtained when you

when your argument kappa f h at the cut off condition will increase beyond pi by 2 and

actually go to 3 pi by 2.

So, what you get here will be the next odd mode which of course, will be TE 3. Now you

might also have guessed that for the even mode condition instead of them being at pi by

2 3 pi by 2 when this left hand side goes through 0 right and for that one for the TE for

the even modes you will have something like gamma by kappa f right. So, for the odd

modes I think there is a minus signs.

So, do not worry about that one, but because at gamma equal to 0 the right hand side any

goes off to infinity, but for the even modes the right hand side goes to 0 because gamma



will be equal to 0 causes the right hand side to go to 0. And once that goes to 0 then you

have different or in fact, you have an infinite number of solutions.

The first solution occurring at 0 which we will allow to be a valid solution, then you

have solution at  pi,  then you have a solution at  say after 3 pi by 2 you will  have a

solution at 2 pi and so on and so forth right. So the solution corresponding to 0 will be

written as TE 0 mode, the solution corresponding to pi will be written as TE 2 mode.

And these are the even modes even because the numbers 0 and 2 and 4 and so on will

correspond to even numbers. What is even more interesting is that once you solve this

transverse resonance condition and then find out an appropriate value of kappa f and plot

on the x axis a value of beta of course, can be obtained from kappa f. 
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Remember that kappa f is given by k 0 square n 1 square minus beta square. So, once

you know what is kappa f, then you can find out what is beta. And then once you solve

the transverse resonance condition and then do so and plot for different frequencies what

are the different allowed values of beta.

You will see that this omega beta diagram which is called as the dispersion diagram will

be bounded by 2 lines. One line will have a slope of say c by n 2 and the other one will

have a slope of c by n 1. So, what is the slope of c by n 1 and c by n 2? Remember that

the phase velocity is given by the ratio of omega by beta and for the modes which are



propagating in the slab and if the material were to be only slab; then the phase velocity

would be c by n 1.

For the material if it was to be only cladding the slope would be c by n 2 and of course, n

1 is greater than n 2 there for the slope of c by n 1 is smaller compared to the slope of c

by n 2. And then once you start; so, this is of course, is the material were to be made out

of anisotropic climbing I mean just a homogeneous cladding or core separately, but what

you have in slab waveguide which means that the value of beta will not be equal to c by

n 1 or be equal to c by n 2, but it will depend on the value of kappa f via this particular

equation.

And as you start looking at the first mode it will start at 0, but then eventually goes off to

c by n 1. So, as omega increases the phase velocity of this fundamental mode starts to

approach c by n 1. Then you will also see that the next mod will also do something like

that, the other mode will do a different kind of a curve. So, you can find out how these

modes actually you know a vary with respect to omega as you change the value of beta

or alternatively as you are vary beta with respect to omega.

So, what you observe is that all this red lines are between the 2 blue lines which kind of

gives you the bounding. Again if you were to consider backward propagating waves and

then  look  at  the  negative  values  of  beta;  you  will  find  very  similar  lines  for  the

fundamental the next order mode and then the other higher order modes. If you have

modes which are guided then guiding can only happen between these regions, this is

called as the guided region.

And the region where the modes do not take up any value of omega or any value of the

combination of omega and beta in the region in between; outside this cone like structure

is where the modes are actually radiating. So, these are called as radiating modes; so, this

is the region where we have guided modes, this is the region where you have radiating

modes. And all this information can be obtained by solving the corresponding transverse

resonance  condition.  Of  course,  the  exact  way  of  solving  this  transverse  resonance

condition is something that you will be seeing in the later modules.

Thank you very much. 


