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Semi Definite Program (SDP) and its application: MIMO symbol vector decoding

Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at  convex optimization,  various problems and their  applications.  Let  us start

looking in this module at different class of problems and which is very interesting that is

the same time very powerful and also understand the various applications. This is known

as Semi Definite Programming. 
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So, it is a slightly more advanced and as I said a very useful class of course. So, this is

known as  Semi  -  Definite  Program,  simply  termed  as  an  SDP for  Semi  -  Definite

Program and as I said this is a very important and powerful, very interesting as well as

and  very  important  and  powerful  class  of  problems.  And  what  is  the  semi  definite

program?
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Put  simply  a  semi  definite  program  is  the  following,  where  you  are  minimizing  a

seemingly simple objective that is objective was still a linear objective.

So, you have a linear objective. However, the constraint is something interesting. The

constraints are well, first let me write the equality constraint that is A x bar equal to your

again this is something that is very similar. But the inequality constraint is something

very interesting, you have x 1 F 1 plus x 2 F 2 that is a linear combination of a weighted

combination of matrices x n or rather an affine combination of it x n F n plus G.

These are matrices this is less than or equal to 0 or you can also say this is greater than or

equal to 0. So, you have x 1 F 1 plus x 2 F 2 x n F n and so on. So, what is this? This is a

weighted combination ok; linear on affine combination that is you are combining.
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These matrices F 1, F 2, F n comma G; so these are matrices ok,these are matrices and

what you are doing is you are performing a weighted combination, a linearly weighted

combination  of  these  matrices  ok.  You  are  performing  a  linearly  weighted  linearly

weighted, linearly weighted combination of these you are performing a linearly weighted

combination of these matrices and at the same time ok.

So, you are performing linearly weighted combination of this basis, and also if you look

at this inequality here, this is a generalized inequality. You can see what this means now?

This is very interesting because what we have on the left is a matrix ok. We are saying

this matrix has to be greater than equal to 0 which implies that this matrix has to be

positive semi definite.

So, this  inequality  for a matrix  where A is  a  matrix,  this  implies  that  A has to be a

positive  semi  definite  matrix  which  in  itself  is  an  interesting,  because  now  we  are

defining  an ordering  or an inequality  on the set  of  matrices  which is  rather  unusual

because typically you cannot compare 2 matrices.

So, this inequality this generalized inequality basically specifies that the matrix A has to

be positive semi definite. So, this optimization problem the first constraint is an equality

constraint. The second inequality constraint is a generalized inequality.



What  it  says  is  this,  weighted  combination  of  matrices;  this  says  that  this  weighted

combination of matrices has to be positive; this weighted combination of matrices has to

be positive semi definite ok. So, this has to be positive semi definite, alright.
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And in fact, this inequality itself this generalized inequality of the set of positive semi

definite matrices is interesting. Let me just briefly describe this. We say 2 positive semi

definite matrices that is A is greater than equal to B that is where A is a positive semi

definite matrix, this is a PSD matrix and this is also a PSD matrix. We say a is greater

than equal to B if and only if x bar transpose A x bar is greater than or equal to x bar

transpose B x bar for all x bar.

So, if any vector x bar, x bar transpose ax bar remember for positive semi definite matrix

x bar transpose A x bar has to be always greater than or equal to 0. So, if x bar transpose

x bar is always greater than equal to x bar transpose B x bar. Then, we say that the matrix

A is greater than equal to matrix B and note that this also implies that x bar transpose A

minus B x bar is greater than equal to 0.

So, this implies that A minus B is positive semi definite. So, A greater than or equal to B

implies that A minus B. In fact, you can put this as implied as in is implied by A minus B

is positive semi definite.
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This  is  another  way of  defining  the  same thing  ok.  So,  A minus  B is  positive  semi

definite.  Now, similarly for positive if  you have a strict  inequality  A greater  than B,

naturally this implies x bar transpose A minus B x bar is greater than 0 for all x bar this

implies A minus B is positive is positive definite with this implies A minus B is positive

definite.

So, my A is strictly greater than B, if A minus B is positive; definite A is greater than

equal to B, if A minus B is positive semi definite. This is the notion of this generalized

inequality  on  the  set  of  positive  semi  definite  matrices  ok.  Now, let  us  look  at  an

interesting application.
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For this semi definite programming, this has as I said its very interesting its powerful it

has several applications. So, let us look at an application of SDP and the application is as

follows. Again let us go to our MIMO wireless system. So, let us consider a MIMO

system and we want to perform MIMO, we want to perform MIMO symbol decoding as

we know as you well know by this point of time that MIMO stands for Multiple Input is

something that you are all very familiar with.

Multiple Output communication system which is very popular in the context of wireless

to achieve high data rates ok. And what do you mean by Multiple Inputs? Multiple Inputs

means multiple transmit antennas. Multiple Output means the multiple receive antennas.

So, in this MIMO system, you have multiple TX antennas and you have also multiple

RX equals r.
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And I can represent this MIMO system model as y bar equals H x bar plus n bar, where

you have this vector of received symbols y 1, y 2, y r equals H times x 1, x 2, x t. These

are t transmitted symbols plus n bar which is an r cross 1 vector ok. Now remember you

have r  output  symbols  on  the  r  antennas  and you have  t  transmit  symbols  on  the  t

transmitted antenna. 
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Now, the point  is each of these symbols right,  if  you look at  each x i  in the digital

communication system, each symbol x i has to be drawn from a constellation that is it



cannot take any possible value. For instance: if it is BPSK it has to be plus or minus 1 if

its  QPSK it  is plus or minus 1 plus or minus j that is you can have only 4 possible

symbols 1 plus j, 1 minus j, minus 1 minus j, minus 1 plus j.

So, each x i is you have to draw it is drawn from a suitable digital constellation for a

digital wireless system. Example, BPSK: this is basically your binary phase shift keying

which implies there are 2 phases as you are seeing this is a binary phase shift keying, this

implies each x i belongs to plus or minus 1 ok. So, which means each x i can be plus or

minus 1.

Now that means, each x i has 2 possible values ok. So, each x i can be plus or minus 1.

Now, that means, each x i has 2 possible values ok. So, each x i can be plus or minus so

on that means, each xi has 2 possible values implies if you look at the symbol vector x

bar which has x 1, x 2, x 2 up to x t.
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So, if you look at x bar which has x 1, x 2, x t each has 2 possible values implies x bar 2

times 2 times so on up to 2 which is 2 to the possible t transmit vectors for BPSK. So,

basically now you observe something interesting, the size of this set; the set of the vector

constellation like corresponding to each digital  constellation right of x i  which is for

which for instance belongs to BPSK.



You have a corresponding vector constellation way to which these vectors x bar belong

and that is of the size 2 raise to the power of t which is growing exponentially in the

number  of  transmit  antennas  t  that  is  the  problem.  So,  this  is  size  of  the  vector

constellation in the number of transmit antennas t.
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And therefore, what is the problem? So, this is growing exponentially ok. Now what is

the problem? So, where is the problem? The problem is ok. So, now, let us say we have

the  set  S.  S equal  to  set  of  all  possible  transmit  vectors  or  possible  digital  transmit

vectors; set of all possible digital transmit vectors x bar and now this sector this set has 2

to the power of t elements and therefore, now what is the problem? The problem is at the

receiver once you receive y correct, we have to find the x bar that has been transmitted,

the vector x bar that has been transmitted like ok.

At receiver given y bar, we have to find x bar that is our estimate or estimate is not a

good one. Let us say we have to decode x bar, find x bar or let us say one has to decode.

So therefore, now the typical decoder that you use or the best possible decoder is what is

known as the ML decoder that is you look at this error y minus H x bar.

This is the error, you look at and the norm square of the error and you minimize the norm

square of the error, you find the vector x bar which minimizes the norm square of the

error that is known as Argument ok. Or you find the vector x bar which minimizes the

norm square of the error; but the problem is now this x bar must belong to this one of this



possible 2 raise to the power of t vector. That is this x bar must belong to this set S or

which denotes a transmit vector constellation.

So, you have to minimize this with x bar belonging to S and now them can see the

problem.
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The problem is you have to search over all t possible vectors, search over 2 to the power

of t possible vectors that is a problem ok to find x hat which basically minimizes this.

Now this decoder this has a name, this is known as the maximum likelihood decoder

which is the best performance ok.
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Now, you want  to  apply  the  maximum likelihood  decoder,  but  you have to  perform

search over 2 raise to the power of t vectors which is increasingly complex as t increases

ok. For example, if t equal to 10, then 2 raise to the power of t equals to raise to the

power of 2 equals 1024. So, in fact that you have to search for over a set of 1024 possible

transmitted symbol vectors for each received vector right.

So, you have to search over was able TX vectors to decode each vector y to decode each

vector and further this observe that this increases with the constellation. For instance: if

you have 16 QAM, then the number of vectors becomes 16 to the power of 16 raise to

the power of 10.
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For example ad this increases with the number of vectors example this increases with the

size of A constellation size example for 16 QAM and this becomes size of S that is a

transmit vector constellation equals sixteen power t.

Now t equal to 10 implies you have 16 to the power of 10 vectors in H over which you

have  to  search  and  this  is  impossible.  Implies  the  search  is  impossible  or  next  to

impossible. Implies the search is impossible ok. And therefore, we have to come up with

low complexity. Therefore, what we have to do? We have to come up with; hence, we

need to come up with low complexity techniques.
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Hence, we need and one such technique is basically what is termed as SDP relax. We

have seen what is SDP already. SDP, Semi - Definite Program. So, one such technique is

SDP relaxation, we relax it relax this ML decoder problem as a Semi - Definite Program

ok. So, we can perform we can formulate this problem as a semi definite which we are

going to see subsequently shortly.

We are going to formulate this MIMO ML decoder as a semi Semi - Definite Program

which has a significantly lower complexity and that is the important thing this is a. So,

this is the SDP relaxation for ML decoding or for I would say rather MIMO ML; this is

for the MIMO ML decoder which has a significantly lower complexity and this is a very

interesting.

So therefore, this is you very useful for practical implementation.
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So, this is significantly lower complexity in comparison to the one the full ML decoder.

The optimal ML decoder which is exponential complexity which is virtually impossible

for a large number of transmit antennas and large constellation sizes. So, we perform an

SDP formulate this is an SDP semi definite program which can be solved very efficiently

using modern convex solvers. And therefore, the resulting ML decoder or what we can

say that it is an approximate ML decoder has a significantly lower complexity. 

So, we will stop here. And this SDP relaxation and how is SDP exactly used for ML

decoding what is a procedure for that we will look at it in the subsequent module.

Thank you very much.


