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Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at example problems in duality. Let us continue our discussion alright. So, what

you want to look at is duality and some problems to understand this. Well, what we are

saying is let us look at this problem, this is for example problem number 9. We want to

find that dual of the problem, minimize the maximum of 1 less than equal to i less than

equal to m, a bar transpose x bar plus b i. And this is known as a piecewise linear model.
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For instance, what you can see each of these represents a line, therefore if you look at

these different lines, and now you take the maximum, so the maximum we will have look

something like this. So, these are m different lines and this is how the maximum looks

like. And you can generalize this n dimensions for hyperplanes all right. So, this is the

maximum which you can see is basically not exactly linear, this is piecewise linear ok.

So, this is piece this is piecewise linear. So, in each in each segment, you have a linear.

So, in each segment, you have a linear characteristic for this. And now what we want to

do is we want to minimize.
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Now, I can write this. Now, to find the dual problem of this what I am going to do is I am

going to first you look at minimize the maximum of i equals 1, 2 up to m a bar transpose

x bar plus bi. Now, first I am going to write this in the epigraph form. So, using the

epigraph form, using the epigraph form, this can be equivalently written as minimize t

subject  to  the  constraint  that  the  objective,  which  is  basically  maximum  of  a  bar

transpose x bar plus b i equal to 1, 2 up to up to m this is less than or equal to t ok. So,

this is basically how considerate. Now, obviously this is the maximum is less than or

equal to t.
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This  basically  implies  that  each of  this  is  less  than equal  to  t  which  means a 1 bar

transpose x bar plus b 1 is less than or equal to t a 2 bar transpose x bar plus b 2 is less

than or equal to t so on a m bar transpose x bar plus b m bar is less than or equal to t ok.
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So, I can write this basically as a equivalent optimization problem minimize t subject to

the constraint that a i bar transpose x bar plus b i less than equal to t for i equals to 1 2 up

to m. This is a much simpler form and there is something that is tractable. Now, I am

going to develop the dual for this all right. So, this is the equivalent form and, now we

can focus on getting the dual of this problem. And the dual of this problem is obtained as

follows, now first you form the Lagrangian L of x bar in fact this is L of x bar comma t

comma, since we have inequality constraints that is lambda bar which is basically, now

you take the objective t plus summation i equals 1 to m 1 Lagrange multiplier for each

constraint that is lambda i into a i bar transpose x bar plus b i minus t.
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Now, what you want to do is you want to group all the terms corresponding to each for

instance this can be written as t plus summation of i equals 1 to m lambda i a i bar

transpose into x bar plus summation of i equals 1 to m lambda i b i minus summation i

equals 1 to m lambda into 1 to m lambda i into t.
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And now if you look at this, this is nothing but summation of lambda i, this is 1 bar

transpose lambda bar this is summation lambda i bi. So, you can write this as lambda bar

transpose b bar, i  mean I think you know what the definitions of these are these are



basically vector of lambda 1 lambda bar is vector of lambda 1 lambda 2 up to lambda m

b bar is a vector of b 1, b 2 up to b m and so on.

And therefore, now if you simplify this, what I get is basically I can write this in compact

form as 1 minus 1 bar transpose lambda bar into t lets some 1 bar transpose lambda bar is

nothing but summation of all lambda i plus you can simply write this take the transpose

of this. So, I can write this as x bar transpose summation I equal to 1 to m a i bar into

lambda i.
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So, it is very convenient alighted that way x bar transpose well summation i equal to 1 to

m a i bar into lambda i bar into lambda a i bar, and lambda into a bar does not matter plus

you have this quantity lambda bar transpose b bar this is summation lambda i b i which is

basically lambda bar transpose b bar. 

Now, observe something very interesting this is linear in t linear in x bar observed or

affine this is affine m t comma x bar basically which means it is a hyperplane ok. And

hyperplane if the slope is not 0, it goes to minus infinity, which means if either 1 minus 1

bar transpose I mean of course we have to take the minimum of this. So, now to get I am

sorry there is one more step that is the dual is give basically getting the minimum of with

respect to x bar t comma lambda bar which is basically.
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Now, you write this a little elaborately this is minimum by the way or x bar comma t or

the primal  variables  x bar  comma t  1  minus 1 bar  transpose lambda bar  into t  plus

summation or plus x bar transpose summation i equal to 1 to m lambda i a i bar plus

lambda bar transpose b bar. Now, you observe this is affine in t comma x bar all right

which means it is a hyperplane. If the coefficients of t or x bar are not 0, it tend to minus

infinity ok.

So, if 1 minus 1 bar transpose lambda bar is not equal to 0 or summation i equal to 1 to

m lambda i a i bar is not equal to 0, that means g of lambda bar equals infinity minus

infinity. Now, minus infinity is still a lower bound, but as we have seen previously minus

infinity is not an interesting lower bound ok. So, this is not something that we would like

to  work  with  that  mean  minus  infinity  is  also  a  lower  bound,  but  the  original

optimization problem, so but this is not very interesting for the simple reason that minus

infinity is the lower bound for any optimization problem any minimization. So, this is

not interesting.
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So, what is interesting on other hand when the coefficients are 0 that is 1 equals 1 bar

transpose lambda bar summation of all  lambda is  1,  and summation i  equals 1 to m

lambda i a i bar equal to 0, which means if you write this as a matrix in matrix form you

have the vector a 1 bar, a 2 bar up to am bar times lambda 1, lambda 2 up to lambda, and

this equal to 0 this implies that A times lambda bar equal to 0. If 1 equal to 1 times

lambda bar and A times lambda bar equal to 0, then the minimum is the minimum of x

bar comma lambda bar comma mu bar. And this minimum you can see is nothing but

lambda bar transpose b bar.
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So,  this  minimum for  that  scenario  is  lambda bar  transpose is  lambda bar  transpose

lambda, but the minimum is lambda bar transpose. Of course, now in the original when

you formulate the Lagrangian, you have to also ensure that remember these are lambda

bars or component wise greater than equal to 0. So, this is true minimize lambda bar

transpose b bar provided lambda bar is component wise.
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So, lambda bar is component wise greater than or equal to 0. And therefore the dual

problem can be formulated as, now interestingly that is maximized g lambda bar that is

maximized the dual function which is maximize lambda bar transpose b bar. Subject to

the constraint that 1 bar transpose lambda bar equals 1 summation of all lambda i equals

1 A times lambda bar equals 0 lambda lies in the null space of a all right. So, remember

look at this is an interesting condition.
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This means that lambda lies in null space lambda lies in the null space of matrix A and

further  non  negativity  of  the  Lagrange  multipliers  associated  with  the  inequality

constraints  that is  lambda bar greater  than equal to 0. This is the dual problem dual

problem  for  the  given  the  original  min  max  problem  that  is  minimization  of  the

piecewise linear function all right can be written in a linear program in this one all right.
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Let us look at another interesting application. We want to derive the dual minimize the

negative summation of log of b i minus a i bar transpose x bar. This problem is arises



frequently in practice this is termed as analytic this is the analytic centering also termed

as the analytic centering problem all right. So, going to minimize this summation i equal

to 1 to m log b i minus of course the domain of this is b i greater than equal to a i bar

transpose x bar. So, this implies a i bar transpose x bar has to be less than or equal to b i

for i equals 1, 2, m that is the domain of x bar ok. So, you have basically this is an

intersection of as we know half spaces. So, this is a polyhedron.
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So, the domain is basically a this is basically a polyhedron. And to develop the dual

again what we will do is we will use a simple substitution. We will substitute y i equals b

i  minus  a  i  bar  transpose  x  bar.  So,  therefore,  the  optimization  problem  can  be

equivalently written as minimize minus summation i equal to 1 to m log y i that is the log

natural logarithm of y i subject to the constraint that each y i equals b i minus a i bar

transpose x bar.
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Subject to the constraint that y 1 equals b 1 minus a 1 bar transpose x bar y 2 equals b 2

minus a 2 bar transpose x bar, and y m going to b m minus am bar transpose x bar. And

in fact, you can stack these things as a vector when you stack these things as a vector,

what you get is the following thing, you can write this as y bar equals b bar minus matrix

A or matrix A times x bar. What is A? A is the matrix a 1 bar transpose a 2 bar transpose

up to am bar ok.
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So,  I  can  write  this.  So,  basically  I  can  write  this  equivalently  as  minimize  minus

summation i equals 1 to m log y i subject to the constraint y bar equals b bar minus A x

bar. Now, what I am going to do again to develop the dual, I am going to write this I am

going to form the Lagrangian and from that minimize it over the primal optimal primal

the primal variables ok. So, the Lagrangian is lambda x bar comma y bar comma, now

there are equality constraint. So, I am going to use nu bar which is basically the objective

minus summation i equal to 1 to m log y i plus summation i equal to 1 to m, 1 Lagrange

multiplier for each equality constraint that is y i minus b i minus a i bar transpose x bar.
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Now, once  again  collecting  all  the terms what  you will  observe is  this  will  become

summation i equals 1 to m first collecting the terms corresponding to y i i equal to 1 to m

minus log y i plus nu i times y i plus once again collecting all the terms corresponding to

x bar this will be a summation i equals 1 to m nu i a i bar transpose times x bar nu i into a

i bar transpose into x bar, and minus summation i equal to 1 to m nu i b i this is going to

be minus b i plus a i bar transpose x bar. So, this is going to be plus nu i a i bar transpose

minus b i. So, this is basically the Lagrangian ok. And now we have to take the infimum

or the Lagrangian all right with respect to the primal of primal the very primal variables

where that is basically y bar and x bar.
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So, now what we are going to do is g of nu bar is the minimum or x bar comma y bar or

x bar comma nu bar which is equal to the minimum or x bar comma y bar well we have

the original way I am going to just simply write it minus summation i equal to 1 to m or i

equal to 1 to m minus log y i plus nu i y i plus summation i equal to 1 to m a i bar

transpose nu i into x bar minus. Now, of course summation of nu i b i I can simply write

this as nu bar transpose b bar just for brevity which is minus nu bar transpose b bar.
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Now, again you can see the following thing. This is affine in x bar affine in x bar implies

if summation i equal to 1 to m a i bar transpose nu i not equal to 0, then you are g of nu

bar that is the minimum minus infinity that is the minimum of this, because it is an affine

function minimum is 0 which is not interesting, once again this is not interesting. 
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Therefore, on the other hand if summation i equal to 1 to m nu i a bar transpose nu i

equal to 0. This implies if you look at this a m bar transpose into nu bar equal to 0 or

basically A times nu bar equal to 0, then of course this is not an affine function. So, we

would like to consider this condition. So, now, we would like to consider this condition A

times, because we still have this other part which is now let us come to this part minus

log y i plus nu i yi.
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Let us look at what is the minimum of this consider minus log y i plus nu i times yi. Let

us call this phi of yi. Now, we have to find minimum of this or minimum of basically phi

of y. So, to do that first differentiate this with respect to phi y i that is minus y i plus nu i

equal to 0 which implies the minimum occurs for well y i equals 1 over nu i and what is

the minimum, minimum value equals nu i into 1 over nu i minus log 1 over nu i which is

basically 1 plus log nu i. So, in summary, if a times nu bar equal to 0, the minimum

occurs  for  the  minimum is  basically  the  minimum of  each  log  y  i  plus  nu  i  y  i  is

basically, so, the minimum of each of this equals basically 1 plus log nu i
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And therefore, the net minimum is this 1 plus summation 1 plus log nu i minus nu bar

transpose b bar.
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So, basically what you have is g of lambda bar equals minimum of L of x bar comma y

bar comma nu bar I am sorry this is g of nu bar this is g of nu bar which is basically

which is you can see summation i equals 1 to m log of nu i plus 1 minus well b bar

transpose nu bar or nu bar transpose b bar which is if you take the constant 1 that is

basically m plus summation i equals 1 to m log nu i minus b bar transpose nu bar. And of

course, subject to the constraint remember A into nu bar equal to 0 otherwise it is minus

infinity which is not interesting.
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And therefore the dual problem is the dual problem of this analytical center is maximize

the dual function which is m plus summation i equal to 1 to m log of nu i minus b bar

transpose nu bar subject to the constraint that A times nu bar equal to 0 that nu lies in the

null space of A ok. It is very interesting nu lies in the null space of nu lies nu lies in the

null space of A.
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And you can see basically what A is, A is a 1 bar transpose, a 2 bar transpose a m bar

transpose.  So, A nu bar or nu bar lies in the null  space a nu bar equal  to 0 implies

basically  each a  i  bar  transpose nu bar  equal  to  0,  which means basically  nu bar is

orthogonal in nu i bar is orthogonal nu bar is orthogonal to each a i bar. So, nu bar lies in



the null space of the matrix all right. So, these are some examples of various problems

view  up  problems  convex  optimization  problems  and  how  to  formulate  their  dual

problem which is often which often yield very useful insights. And these are often very

useful in practice especially for practical application all right. So, let us stop here, and

continue in the subsequent modules.

Thank you very much.


