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Examples on Duality: Dual Norm, Dual of Linear Program (LP)

Hello, welcome to another module, in this massive open online course. Let us continue

looking at examples and in this module let us looking, let us start looking at examples

pertaining to duality ok. So, we want to start looking at examples related to concepts of

Duality ok, and what we have seen is the following.

(Refer Slide Time: 00:25)

Let us start with the first example that is something interesting pertains to this concept of

a dual norm. And now, the dual norm for instance if you have a vector x bar and this is

the l norm alright, for instance, l can be 2, that is the l 2 norm or one l 1 norm and so on.

Now, the dual norm of this is denoted by norm z l star, which is defined as the maximum

of z bar transpose u bar or all elements, such that norm of u bar l is less than or equal to

norm of u bar l is less than or equal to 1, ok.



(Refer Slide Time: 02:12)

So, this is basically the dual norm. So, this is the l, this is the original norm and this is

basically the dual norm, this is the dual norm and now, for instance, let us look at some

examples  of  course,  this  is  simply  a  definition.  Let  us  look  at  some  examples  to

understand this. Let us consider l 2, that is we are talking about the l 2 norm. We are

talking about the l two norm, therefore, what is the dual norm?

That is the dual norm of the l 2 norm is maximum over all z bar transpose u bar, such

that the 2 norm, l 2 norm of u r is less than equal to 1 for instance. Now, let us look at

this, let us look at, so this is basically, now if you look at this, you have this maximum of

z bar transpose u bar. Over all such vectors norm u bar 2 is less than equal to 1. This is

the pertinent optimization problem and of course, you can see, this is convex in nature

because, this is a, linear objective convex constraint ok, and now this is easy to solve.

In fact, we know that, magnitude of z bar transpose u bar is less than or equal to, in fact,

z bar transpose u bar itself is less than or equal to norm of z bar into norm of u bar. So,

we know for two vectors z bar and u bar, z bar transpose u bar is less than equal to norm

of z bar times norm of u bar. All right, the dot product is less than equal to the product of

the norms. This follows from the Cauchy Schwarz Inequality this is from the.
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Now, we know that this norm u bar is less than or equal to 1, which basically implies z

bar transpose u bar is less than equal to norm z bar times. Norm u bar, which is in turn

less than or equal to norm z bar because,  norm u bar is  less than equal to 1, which

implies that basically, z bar transpose u bar less than or equal to norm z bar and when

does the maximum error, we know the maximum occurs when u bar is aligned in the

direction when maximum for u bar is aligned with z bar, u bar is aligned with z bar and

norm u bar equals 1, which implies u bar equals z bar divided by norm z bar.
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So, the maximum occurs, when u bar z bar divided by norm z bar and the maximum is z

bar. The maximum equals well z bar transpose substitute instead of, u bar substitute z bar

divided by norm z bar. So, this is norm z bar square by norm z bar. So, its norm z bar

square by norm z bar. It is a norm z bar of course, all these are 2 norm because, as I

mentioned when there is no norm mentioned by default 2 norm ok. 
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And therefore,  you observe something interesting,  what  you observe is  that  the dual

norm of the 2 norm equals the 2 norm itself ok. So, this is very interesting dual norm of

the l 2 norm is the dual norm of the l 2 norm is the l 2 norm itself ok.
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Now, let us look at another interesting one, do you want to consider (Refer Time: 07:01)

the l infinity norm? We want to ask the question, what is the dual norm of the l infinity

norm? Now remember l infinity norm, that is norm of l norm of u bar l infinity, infinity is

simply the maximum of magnitude u 1 magnitude u 2 magnitude u n or simply the,

maximum of the magnitudes of all components of this.

Now, what is the dual norm of the infinity norm, that is norm z bar of infinity dual norm

is the maximum, that is your maximum of z bar transpose u r such that the infinity norm

of u bar is less than or equal to 1, now what is z bar transpose u bar, now norm infinity

norm of u bar less than equal to 1. This implies maximum value of magnitude u i is less

than equal to 1.
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Now, assume z a z bar and u bar both to be n dimensional vectors. Now, what is this?

This is simply equal to summation i equal to 1 to n z i times u i, and now if you look at

this. Now, therefore,  now this is your z bar transpose u bar, which is simply the dot

product between two. It is a summation of component y, that summation of component y

s product, that is summation of i equal to 1 to n z i times u i, when n is the dimension of

each vector. Now, this is less than or equal to; obviously, the summation i equal to 1 to n

magnitude z i magnitude z i times u i, which is equal to summation i equal to 1 to n

magnitude z i magnitude u i.
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Now, we know magnitude u i less than each magnitude, u i is less than equal to 1. Now,

look  at  this  maximum value  of  magnitude  u  i  less  than  or  equal  to  1,  this  implies

magnitude u i less than equal to 1 for all i, i equals 1 2. Since, the maximum itself is less

than equal to 1, it means that the magnitude of each component of the vector u bar has to

be less than equal to 1, naturally ok. Since, the infinity norm l infinity norm is less than

equal to 1 and that gives us a very interesting expression.
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So, this is less than or equal to summation i equal to 1 to n magnitude z i and in fact. So,

that gives us the expression, that z bar transpose u bar is less or equal to summation

magnitude z i. Now, does the maximum occurs; yes, occur yes maximum occurs. If you

think about it, when magnitude u i equal to 1 for each i, that is for all i magnitude u i

equal to 1 and the sine of u i equals sine of z i.

That is what you are doing is, if u i z is positive, you are setting u i to be plus 1. If z i is

negative, we are setting u i to be minus 1, that is u i equal to plus 1. If z i is greater than

equal to 0 minus 1, if z i is less than that is u i is basically equal to, you can say in some

sense, sine of z i all right and in that case, what is this? You can see, the maximum values

achieved and what is the maximum value? 
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Maximum value is nothing but the l 1 norm, that is the l 1 norm and therefore, what you

observe is something very interesting, what you observe is the dual norm of the infinity

norm equals the l 1 norm. So, the dual norm of infinity norm, dual norm of the l infinity

norm is the l 1 norm all right. In similarly, you can work out the dual norm of other

norms. For instance, what is the dual norm of the l 1 norm and you should be able to

convince yourself, that it is indeed the l infinity norm. These are the duals of each alright.
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Let us look at another problem, problem number 8 or example number 8, we want to

derive the dual optimal problem corresponding to general LP. So, we want to do dual of a

general LP or that is your general linear program dual of a general linear program and

this can be found. Now, consider your general linear program, that is your minimum c

bar transpose x bar subject to the constraint that G x bar is less than or equal to h bar and

A x bar equals b bar. Now, the dual problem; now what we want to do is this is a general

LP; general LP means, it has of course, these are component wise inequality constraints

ok.

So, each element on the left, each element of the vector on the left is less than equal to

each  element  on  the  right  that  is  of  h  bar.  So,  this  is,  so  general  LP means  it  has

inequality  constraints  and  it  has,  does  inequality  constraints  and  it  has  equality

constraints.
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And therefore, if you look at this Lagrangian, you can formulate remember to find the

dual problem.

So, we want to find the dual problem for this. This is L bar of x bar lambda bar m u bar

and the dual problem of this is a c bar transpose x bar plus lambda bar, G x bar minus h

bar plus n u bar lambda bar transpose plus n u bar transpose A x bar minus b bar. Of

course,  with  each,  Lagrange  multiplier  lambda  i  associated  with  the  inequality

constraints  greater  than  equal  to  0  ok.  These  are  Lagrange  multiplier  these  are  the



Lagrange multipliers for the inequality constraints, and we have seen something similar,

before we have seen the linear program with only equality constraint, but not in equality

constraint.

(Refer Slide Time: 15:57)

Of course, these are vectors because, you have for each 1 Lagrange multiplier for each

lambda bar, one Lagrange multiplier for each inequality constraint, that is if G is m cross

n, then you have m inequality constraints all right. So, therefore, you have m Lagrange

multipliers  alright  and  nu  bar  is  basically,  1  Lagrange  multiplier  for  each  equality

constraint, that is if A is m tilde cross n tilde then u bar is; obviously, m tilde. So, ok. So,

1 Lagrange multiplier or each equality 1 for each equality constraint and now I can recast

this. I can recently rewrite this just write this as x bar transpose take the transpose of the

whole thing because, its scalar quantity.

So, I can simply write the take the transpose of this correct x bar transpose into c bar plus

x bar  transpose  into  well,  I  can write  this  as  x  bar  transpose  c  bar  plus  well  x  bar

transpose G transpose, minus h bar transpose into lambda bar plus x bar transpose A

transpose  minus  b  bar  transpose  into  n  u  bar  and  collecting  all  the  terms  in  x  bar

transpose, this is c bar plus G transpose lambda bar minus h bar transpose lambda bar. I

am sorry G transpose lambda bar plus A transpose mu bar minus this will be the constant

terms h bar transpose lambda bar plus b bar transpose mu bar.
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And now you will observe something interesting, what you will observe is this is a linear

function of x or in fact, this is A fine in x bar ok, which means now, now we have our

Lagrangian, remember correct if you look at the duality theory.

Now, we have to find G of lambda bar mu bar, which is the minimum of the Lagrangian

for each value of lambda bar comma mu bar that is for each Lagrange that is for at every

point it corresponds to every lambda bar corresponding to a particular lambda bar u bar.

There is Lagrange multiplier vectors, we have to find the minimum with respect to x bar.

Now, you can see this  is a fine an x bar, which,  implies the minimum equals minus

infinity if the linear term, that is a coefficient that is the, that is a vector multiplying x bar

is not equal to 0. Then I can take it to minus infinity by choosing appropriate values of x

because, it is a hyper plane in x, correct. This is the equation of a hyper plane alright and

by choosing if this coefficient vector multiplying x bar is not 0. Then by choosing x is

appropriately, I can always take it to any straight line or hyper plane I can always take it

to minus infinity ok. So, this is minus infinity if c bar plus G transpose lambda bar plus A

transpose n u bar is not equal to 0.
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On the other hand something interesting.  Now, minus infinity is also a lower bound.

Remember G of this thing lambda bar nu bar is always a lower bound. So, minus infinity

also lower bound for the original problem, but it is not very interesting because, minus

infinity is a lower bound for any optimization problem, but it is not very; let us put it

useful it is not very useful. So, instead we want a certain lower bound, which is more

useful and that you will get by considering the other case, when c bar plus G transpose

lambda bar plus A transpose.
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So, a more useful lower bound more useful, let us say lower bound is when, if c bar plus,

when c bar plus G transpose lambda bar plus A transpose nu bar equals 0 then the lower

bound if this is a constant. Therefore, G lambda bar mu bar in this context, in this case G

lambda bar mu bar equals well, what is it? It reduces to the constant, which is minus h

bar transpose lambda bar plus b bar transpose m u bar ok, and therefore, now, so this is a

lower bound, this is a lower bound. What does this mean?

This  means  that,  for  any  lambda  bar  nu  bar  and  of  course,  lambda  bar  has  to  be

remembered, that constraint is always their lambda bar has to be comprehensives greater

than  equal  to  0.  This  is  all  the  Lagrange  multipliers  associated  with  the  inequality

constraint have to be greater than equal to; so, for any such lambda bar m u bar satisfying

this  constraint  alright,  G  of  lambda  bar  mu  bar  is  a  lower  bound  for  the  original

optimization and therefore, what is the best lower bound, that is the dual problem.

So, the best lower bound, which means something that, is close. So, everything is a lower

bound,  what  is  the  best  lower  bound  something,  that  is  the  maximum  value.  So,

everything; so you can, if you remember the picture, this is the original problem, which

is convex. This is the dual function and this  is always a lower bond ok, for any the

entirely lies below the optimal value.

So, this is the primal optimal and this write here is d star, which is the dual optimal and

this is what we call as the best lower bound because, its closest it  is the one, that is

closest to the optimal optimum value p star of the primal, primal optimization problem

and of course, if d star equal to p star that implies, that the duality gap is 0 the primal

optimal equals the dual optimal ok, p star equals d star implies duality gap equal to 0.
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And therefore, the dual problem is basically the best lower bound, which is maximizing

G bar lambda bar mu bar, which in this case, is well c bar plus G transpose lambda bar, I

am sorry, which is in this case is and observe that the dual function, this is concave ok.

So, G of lambda bar mu; so,  this  is  minus h bar transpose lambda bar minus b bar

transpose nu bar minus h bar transpose lambda bar. I am sorry or you can write plus, but

this is brackets minus h bar transpose lambda bar plus b bar transpose nu bar negative of

the whole thing ok. That is the constant.

So, minus h bar transpose lambda bar, I am just going to write it like this minus h bar

transpose lambda bar minus of h bar transpose lambda bar plus b bar transpose u bar, but

of course, you have constraints  subject  to the constraints  that remember, this  is  only

when c bar plus G transpose lambda bar plus A transpose nu bar equal to 0, and of

course, each lambda bar is component each lambda is greater than equal to 0 or lambda

bar is component wise greater than equal to 0 and this is the dual problem and you can

see this is concave because, it is a linear function linear in lambda bar nu bar.

So, it is both convex and concave or it in particular the dual problem is concave and

therefore, you can find d star this gives solution equal to the optimum value equal to d

star, which is, in fact, less than equal to p star, but in this case d star will be exactly equal

to p star because, this is a linear program which is a convex optimization problem. So, in

general for a convex optimization problem strong duality holds, which implies that d star



equal to p star ok, all right. So, we will stop here and continue with other examples in the

subsequent modules.

Thank you very much.


