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Hello welcome to another module in this massive open online course. So, we are looking

doing examples  on convex optimization  alright;  to  better  understand through various

examples alright; so, let us continue the discussion.
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So, we are doing convex optimization problems. So, we are doing convex optimization

problems and in particular we are doing a few examples which I think we will focus on

or we will illustrate how to formulate these problems and in fact how to formulate them

as convex optimization problems; so that we can use that convex solver to solve this

optimization problems alright. 

So, let us look at an yet another example; example number 3 that is we want to minimize

this  norm A x bar  minus  b infinity;  subject  to  the  constraint  that  norm x bar  or  to

minimize x norm x minimize l 1 norm; for norm A x bar minus A A x bar minus b bar

subject to the constraint that l infinity norm of x bar is less than norm equal to 1. Now of

course, if you look at this; this is convex optimization problem because if you look at this

l  1  norm;  this  is  convex  and  this  is  convex.  So,  we have  convex  objective  convex



inequality constraint;  so, this is the convex optimization problem alright and you can

direct solve it.

But we want to sort of; however, it recast it into a home that is more intuitive or more

amenable to analysis. And you can see, you will see that this problem which has this

looks or seemingly complicated can be cast or can be recast in a very nice form and that

is as follows we are going to do the following things.
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So, you have a A x bar; let us assume A is an m cross n matrix.
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Then you can rewrite this as follows you have this a 1 bar transpose, a 2 bar transpose

this will be a m bar transpose x bar. So, this is your matrix A; which has m rows, which I

am denoting by m bar transpose a 2 bar transpose, a m bar transpose; a times x bar minus

b 1, b 2 up to b m ok. And you are taking the l 1 norm of this ok; this whole thing

remember  you  are  taking  the  l  1  norm nothing,  but  sum of  the  magnitudes  of  this

elements  of  this  vector;  which  is  basically  you  can  write  this  as  the  sum  of  the

magnitudes, magnitude a 1 transpose x bar minus b 1 plus magnitude; a 2 bar transpose x

bar minus b 2 plus so on plus magnitude a m bar transpose x bar minus b m.
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And now what I want to do; is want to introduce the constraint I want to introduce the

constraint that is magnitude a i bar transpose x bar minus b i is less than or equal to y i.

So, now what as this imply? This implies that minus y i is less than or equal to a i bar

transpose x bar x bar minus b i which is in turn less than or equal to or which is less than

or equal to y i ok.

For instance magnitude of a quantity x less than equal to y implies that x lies between

minus y and y. So, that is what we review here; minus y i less than equal to a i by

transpose x bar minus b i, which is less than equal to y i ok. And therefore, now you have

using the now each of this quantities less than or equal to y i, so therefore, using the

epigraph form you can write this as summation of y i that is into minimizing summation



of magnitudes a i bar transpose x bar minus b i, I can minimize summation of y 1 plus y

2 plus up to y m.

Now subject to the constraint that now we have this constraint, what is that? Minus y i

less than or equal to a i bar transpose x bar minus b i which is less then equal to y i; for i

equals 1, 2 up to m this is the constraint.
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And now you still have the other constraint, the other constraint is remember remains as

it is norm x bar infinity less than or equal to 1. Now we have also know that you can

write this l infinity norm constraint also as a set of linear constraint. Because look at this,

what is this? This is l infinity norm; what is this l infinity norm? This is the maximum of

magnitude x 1 magnitude x 2 so on; magnitude of x n because remember x is  an n

dimensional vector a is m cross n; so, this is less then equal to n.

So, maximum of n quantities less than equal to n; that means, each of those quantities is

less than or equal to that is maximum of n quantities less than or equal to something then

each of those quantities must be less than equal to the same thing. So, this means that

you have well magnitude of x 1 less than or equal to 1, magnitude of x 2 less than equal

to 1 so on.
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Magnitude of x n less then equal to 1; which implies that minus 1 less than equal to x 1

less than equal to 1, minus 1 less than equal to x 2 less than equal to 1 so on and so forth;

minus 1 less than equal to x n less than equal to 1.

This you can write it in a compact fashion; this you can write it as minus 1 bar less than

or equal to this is component wise inequality; less than or equal to x bar less than equal

to 1 bar. This is a component wise that is 1 less than equal to each component minus 1

less than equal to each component x i of this vector, less than equal to 1.
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And therefore, now and further if you look at this; you can write this also as a component

wise  inequality.  This  you  can  write  as  follows,  this  you  can  write  as  minus  y  bar

component wise less than equal to A x bar minus b bar which is component wise less

than equal to y bar again ok; so this reduces to this equivalent representation.
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So, now you can write the equivalent optimization problem and that will be you have to

minimize y 1 plus y 2 plus up to y m which is basically minimize 1 bar transpose y bar;

subject to the constraint minus y bar less than equal to A x bar minus b r bar component

wise less than equal to y bar; minus 1 bar component wise less than equal to x bar,

component wise less than equal to 1 bar.

And you can see what you can see is this is linear, objective is linear and constraints are

all  also  linear  or  other  affined  constraints;  implies  this  is  a  linear,  this  is  a  Linear

Program; this is an LP ok. So, what we have been able to show is that interesting or

seemingly complicated problem which is basically minimize the l 1 norm of something;

subject to the l infinity norm being lower than or less than equal to something. And be

written as simple as a very intuitive and an appealing structure; it can be reduced to a

simple linear program; linear objective affined constraint ok; so, that what it is.

So, it is at and linear program is much more institute because a linear program is I mean

the techniques to solve a linear program and various insights into the solution of a linear

program are well known alright. So, from something that is sort of difficult to understand



that first impression is we are reducing it to something that can be much more easily

understood and appreciate alright. And or the both these are remember equivalent form

of the same convex optimization problem; the original  problem is  convex, the recast

problem  is  also  convex  alright.  But  the  second  form  is  much  more  intuitive  and

appealing alright.
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Let us look at another problem which is very interesting from practical perspective; this

is termed as network flow, this is a network this at arises in several; this is network flow

alright.  And this arises several optimization scenarios correct;  this is one of the most

important kind of optimization problems that arises in various fields such as for logistics

management, supply chain management etcetera alright.

So, this something that applies for instance and logistics and the problem is very simple;

to consider network for instance let say we have a network of hubs ok; just drawing a

simple  network  these  are  for  instance  what  you can  think  of  these  are  hubs or  sort

facilities. So, this is our network; so each of these nodes this is a hub or a sort facility in

for  instance  in  the  distribution  network;  for  instance  you  can  consider  distribution

network of a Etailer ok.
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May  (Refer  Time:  12:41)  company  with  E  commerce  and  Etailing  gaining  lot  of

popularity.  Remember  to  distribute  these  products  you  need  a  network  of  hubs  or

whatever sort faculties; where you have a lot of this products that bought into sorted and

dispatched to other hubs and ultimately of course, delivered to the end user alright.

So, you have this network of connected hubs alright and your products entering and then

the product leaving or commodities which are entering in commodities which are leaving

each hub; so we have flows between these hubs. So, x ij this denotes the we can call it

this as basically the flow from hub; i or load i and each flow has a cost C ij is the cost per

item of link or the path between i j.

So, you have C ij which is the cost per item; x j is the number of items that represents the

flow between load i and load j. So, these are basically your sort facilities or basically this

is the network of sort facilities or hubs ok. Now in addition what you will have is you

will have a supply correct; so you will have external supply b i. So, if you look at each

hub or each load you might have some things that is supplies flows; that are coming from

other  loads,  flows  are  going  into  other  loads  and  in  addition  you  might  have  an

independent supply b i alright.

So, this b i indicates the supply that is coming into load i; if b i is positive on the other

hand its b i is negative it means that that supply alright that commodities are leaving

from that alright. So, b i is the external supply at node i it is positive; it is coming in,



negative if it is going out ok; this is external supply at node i ok. So let us say n equals

the number of lodes in the distribution network; in this distribution network it is a very

elegant problem n equals number of nodes in the distribution network; we have already

seen x i j which is the flow from node i to node j let me just define that again.

Because that is an important quantity flow from node i to node j; we have already seen c

i j is the cost from cost per item form node i into node j. And let us denote the upper

bound and lower bound of the because remember each sort facility have a certain limit in

the flows corresponding to, but because there might be certain links or certain parts right;

which are where are restrictions in terms of the a in terms of the flow the total outflow in

flow products alright.
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So, we want to have this flow corresponding to this flow we have the lower bound x ij; l

ij equal to lower bound and u ij equals upper bound ok; which basically implies its very

simple which basically implies that each flow x ij has to be between l ij and u ij ok.

So, this  is  your lower bound and u ij  is  your upper bound ok. And we will  enforce

another condition that is if we look at the total external flow b 1 plus b 2 for all nodes.

The total external supply equal to total external this is the total flow that is total external

flow or you can think of this as net external supply equal to 0, which implies that total

external supply equals total external demand; that is what it means is very simple its very



intuitive  that  is  this  products  of  commodities  that  are  entering  at  some  node  are

eventually leaving at some other nodes.

So, it cannot happen that this commodities are entering; a large number of commodities

entering and only few commodities are leaving, which means that this commodities are

getting lost or it does not mean that only some commodities are entering a large number

of  commodities  are  leaving  which  means  commodities  are  some  somehow  being

magically generated alright.

So, just means that commodities are entering and whatever commodities are entering at

the various hubs are eventually leaving the network at possibly the same or different

hubs alright that depends on the flow ok. So, the net external supply that is if you look at

b 1 b 2 b n some of the bi’s are positive some of the bi’s are negative. Because at some

point we have supplied entering some point we have the supply leaving alright. So, the

net external supply alright must be 0 which means the total external supply equals the

total external demand.
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Which also means that if you represent this sufficiently; this means that 1 bar transpose if

you look at this vector of supply vector 1 bar trans b bar equals 0. Now what we want to

do is we want to formulate this network flow problem; which is minimized the total cost

of the network.



And it is very simple; now what is the total network cost? Total network cost is if you

look at all links i, j alright and j not equal to i; if you look at the flow x ij and the cost per

item c ij; this is your objective alright this is the total cost total cost.

(Refer Slide Time: 19:42)

Because if you look at this; this is your cost per item and this you can think of as number

of  items  ok.  So,  this  is  basically  the total  cost  of  running your  distribution  network

subject to the constraint, now this is the important subjective constraint if you look at

each node b i which is the total external supply plus the total inflow; if you look at each

node i j equal to 1 to n, x; ji that is supply from, that is flow from node j to i.

Now, flow from j to i minus the flow from node i to all nodes j this must be equal to; this

is the important constraint. Basically says that total external supplied each hub and the

total  flow from all  the other hubs to a particular  node i  must equal  to total  flow of

commodities or goods from node i to the other nodes or a just makes this enforcing the

constraint that none of the goods are either being are not unaccounted for at hub i; alright

they are goods; that goods are not being generated or goods at not disappearing.

So,  the  external  supply plus  the  flow from all  the nodes  right  must  be  equal  to  the

external  flows;  some of all  external  flows from any part.  And this  must  hold for all

particular  loads  or  all  particular  hubs  in  your  or  all  particular  sort  facilities  in  your

distribution unit.
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And we have the bounds that we have already seen l ij less than or equal to x i j less than

equal to u ij alright; that is your constraint. And of course so this is your optimization

problem  and  if  you  look  at  this;  this  is  your  optimization  problem,  this  is  your

optimization this is your optimization problem.
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And you can see again linear objective; linear objective of course, this must hold for all i

ok; this is basically linear or affined constraints. Again affined constraints; implies this is

also and very interestingly and you can see the practical nature of this problem, we are



looking at a large distribution and even easily extend it to any number of because the

statement is general.

So, you can have a large distribution network which tens of thousands of hubs; what this

says is as long as total external supplies is equal to the total external demand, which

generally holds alright and you have no the links the cost associated with each link which

is varying in a linear fashion alright with the number of items. Even formulate this is a

linear program and there would this complex problem minimize of the cost of a supplied

chain or cost of a distribution network can be formulated as a linear program.

And  therefore,  convex  optimization  has  several  practical  applications;  in  fact,  this

problem itself can be applied in a practical context to minimize the cost associated with

the network alright.  So, this is the very practical problem and there are several such

problems which are severe or significant practical relevance alright. So, we will stop here

and continue in the subsequent modules.

Thank you very much.


