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Examples: Linear objective with box constraints, Linear Programming

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at  example problems in convex optimization.  Let  us continue  our discussion

right.

(Refer Slide Time: 00:24)

So, we are looking at example problems and let us look at another problem, problem

number 1. So, we want to look at  meaning this  is a simple problem minimize c bar

transpose x bar subject to the constraint that l bar is component wise a given vector l bar

is component wise less than equal to x bar; which is less than equal to another vector u

bar. That is which means that if you have the elements of this vector let us say l is x bar

is an n dimensional vector then we have l 1, l 2 up to l n is component wise less than or

equal to your vector x 1, x 2 up to x n which is again component wise less than or equal

to u 1, u 2 up to u n.



(Refer Slide Time: 01:53)

That means each l i has to be less than or equal to x i has to be less than equal to or has to

be less than or equal to x i has to be less than equal to these are not there is a single

scalar quantity.

So, this is just your normal equality and this has to hold for all i equals 1, 2 up to n and

this is also known as box constraints; this constraint these constraints. In fact, a set of n

constraints, in a 2 in constraint these are also known as box constraints because, if you

look at the 2 dimensional scenario.
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That is if you look at a 2 D plane what we will have is that for l 1 x 1 that is if you look

at x 1 and x 2 this will mean that x 1 is less than or equal to u 1 u 1 and x 2 is greater

than equal to x 1 is greater than or equal to l 1 l 1 and for the same matter x 2 is less than

or equal to u 2 and x 2 is greater than equal to l 2. So, therefore, x 1 x 2 are confined to

this box that is greater than equal to l 2 less than equal to u 2 greater than equal to l 1 x 1

greater equal to l 1 less than equal to u 1 ok.

So, they have constrained to this box. So, x 1 that is your vector x 1 x 2 is constrained to

this box. Hence, this is also termed as that is in fact the rectangular box correct this is

your rectangular  box hence is also termed as box type constraint.  In fact,  the simple

optimization problem this can be solved as follows and is a simple. In fact, if you look at

it this is simply a linear objective this. In fact, is a linear program alright, it is a simple

linear  program you have the objective  function is  linear  and the constraints  are  also

linear correct.

So, this is in fact, if you look at this is a simple linear program this is nothing, but if you

remember a linear program is nothing but linear objective and linear constraints. And, the

solution for this is fairly straight forward it is a simple example.
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So, if you look at the object you have c bar transpose x bar which is basically i equal to 1

to n summation c i x i. Now, observe this box type constraints make sense only if l i is

less than or equal to each u i. 



So, we assume here that is l i is less than or equal to u i. If l i is not less than or equal to u

i then the constraint no x i can satisfy, x i greater than equal to l i, but less than equal to u

i, alright which means the problem becomes infeasible all right. So, problem is feasible

only if l i that is each lower bound l i is less than equal to the upper bound u i for each

variable x.

So l i so, problem to be feasible; this implies l i is less than equal to u i, otherwise there is

no point x which satisfies the constraints no. So, we have l i is less than equal to u i.

Now, consider any x tilde i such that l i is less than equal to x tilde i less than equal to u i

that is any x tilde which is lying within this interval.
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Now, therefore, now this implies something very interesting if c i greater equal to 0, this

implies c i inequality remains c i less than equal to c i x tilde i less than equal to c i u i

ok.

So, minimum value if x if c i is greater than equal to 0, minimum value of over for x tilde

lying in this box is c i l i which occurs when x tilde equals l i which has the (Refer Time:

08:02) x tilde equals l i or x i equals l i. That is the minimum over this interval in this box

occurs for l i if c is greater than equal to 0. On the other hand if c i is less than or equal to

0.



Now, now again observe that l i is less than or equal to u i, if that is for any x i which

implies if c i is less than 0 in this implies now inequalities get reversed this implies that c

i l i greater than equal to c i xi any xi in the centre it is greater than equal to c i u i which

means, this is the minimum value, minimum value if c i less than 0 ok.
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And therefore, the optimal value of each xi now it is clear. Optimal value each xi this is

equal to well what is this equal to this is equal to l i if the corresponding c i is greater

than equal to 0 and this is equal to u i, if c i is less than 0. And therefore, the minimum up

of c bar transpose x bar which is equal to the minimum of summation i equals 1 to n c i

xi.
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This is equal to summation you can also write it as summation i equal to 1 to n c i plus

times l i plus c i minus times u i, where c i plus you can also write this as maximum of c i

comma 0 which is equal to I am sorry this is not c i bar the c i plus this is equal to c i if c

i greater than equal to 0 and 0 otherwise.
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On the other hand, similarly c i minus c i minus equals c i if c i less than equal to 0 0

otherwise and you can also write it in a compact fashion as follows; you can also write

this as therefore, minimum c bar transpose x bar subject to your constraint that is the box



constraints l bar component wise less than or equal to x bar component wise less than

equal to u bar. This is equal to summation i equals 1 to n c i plus l i plus c i minus u i

which is equal to you can write this as l bar transpose c bar plus plus u bar transpose c

bar minus where c bar plus contains all this contains all positive elements of c bar or

contains only non negative.
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The rest are 0 and this also contains only negative elements of c bar c bar minus rest of 0.

So, that is the optimal value of this problem. So, you can say it c bar transpose x bar the

minimal value is c i plus into l i plus c i minus into u i; that is where c i plus equals c i if

c i is greater than equal to 0 and 0 otherwise ca minus equals c i if c i is less than 0 and 0

all right.

So, this is although the idea is very simple. It shows you formally how to come up with

the solution of a simple objective convex optimization problem like this one which is a

linear program alright. Let us proceed to a slightly more sophisticated example which the

solution to which might not be very obvious and that is the following.



(Refer Slide Time: 13:53)

Say problem number 2; we want to minimize the following again, linear objectives what

transpose x bar subject to the constraint A x bar now this is a is not box wise there is a

component wise inequality A x bar component wise less than equal to b bar ok, you can

see objective is linear, constraints are linear. Therefore it is a linear program, but slightly

more sophisticated and it depends on the solution, now very much depends on the nature

of A to make the problem simple.

We will say A is A is a square full rank matrix. This implies that A is invertible ok; A is a

square full  rank matrix  which implies  that  A is  invertible  and we need to  solve this

optimization problem. For this what we do is we substitute x bar equals y bar. So, we

will set A x bar equals y bar which implies that we will convert this into an optimization

problem in terms of y ok. We are introducing this new variable y. Now, since A is an

invertible matrix, there is a 1 to 1 correspondence between x bar and y bar. So, which

means x bar equals A inverse y bar ok. So, from x bar 1 can find y bar from y bar 1 can

find x bar. Since, A is invertible there is a 1 to 1 correspondence ok.
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Now, we will write the equivalent optimization problem in terms of y bar. Therefore,

optimization problem can be formulated in terms of y bar. So, we have the objective c

bar transpose x bar which is c bar transpose A inverse y bar and I can formulate this as c

tilde  transpose  y  bar,  where,  c  bar  transpose  inverse  equals  c  tilde  transpose  which

implies taking the transpose on both sides A inverse transpose c bar equals c tilde.

So, I combined the inverse and transpose I am simply going to write A minus A inverse

transpose which means, A transpose inverse or inverse transpose both of these are the

same thing A inverse transpose c bar equals c tilde ok.
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So, the objective becomes minimize c tilde transpose y bar subject to the constraints.

Subject to the constraint A x bar component wise less than equal to b bar, but A x bar

equals y bar. So, this constraint will be y bar is component wise less than or equal to b

bar.  So,  now,  we  have  a  very  nice  we  have  a  much  more  insightful  and  simpler

optimization problem. Minimize c tilde transpose y bar in terms of y bar in terms of the

new variable y bar subject to the constraint y bar is component wise less than or equal to

b bar and this will basically be summation i equals 1 to n c tilde i y i ok.
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And the constraint will be component wise constraint this implies that each component

of this vector y y i is less than or equal to each component of vector b that is b i ok. Now,

it is easy to see what the solution of this optimization problem is now. If once again you

go back to the now one can see what the we have reduced it to an equivalent form from

which it is simpler to infer the solution. Now, you can again rely on the principles we

have seen previously if c i tilde.

Now, see if c i tilde is greater than equal to 0, we have y i less than or equal to bi which

implies c i y i less than or equal to c i bi which implies c i y i or rather c i tilde, I am

sorry c i tilde say i tilde y tends to minus infinity as y i tends to minus infinity ok. So,

implies that I can make the objective right by tending that particular y i. So, if any c i

tilde is greater than equal to 0, I can take that y i to minus infinity objective becomes

minus infinity. So, it is unbounded below ok.

So, if any if any c i tilde greater than equal to 0 implies or to be more specific, if any c i

tilde is greater than 0, there are not greater than equal to 0. If any tilde is any c i tilde is

greater than equal to 0 implies c i y i tends to minus infinity, if y i tends to minus infinity;

in implies minimum value equals minus infinity.
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Now, if all c i tilde are less than or equal to 0, if all c i tilde; now you observe that yi less

than or equal to bi implies c i because c i tilde is negative c i yi c i tilde y is greater than

or equal to c i tilde b i. So, the minimum occurs for c i tilde bi.
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And therefore,  the  met  minimum implies  minimum c bar  transpose or  rather  c  tilde

transpose y bar equals well, summation i equals 1 to n c i into bi which is equal to c tilde

bar transpose b bar and we know what is c tilde transpose d tilde transpose is c bar

transpose A inverse b bar, but this is only if each c i tilde is component wise less than 0, a

component wise less than 0 or component wise less than or equal to 0, component wise

less  than  or  equal  to  0  which  implies  c  tilde  equals  A inverse  transpose  c  bar  is

component wise less than equal to 0.
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And otherwise minimum c tilde transpose y bar equals minus infinity because if any

component of c tilde that is any component of A inverse transpose c bar is greater than

equal to 0 greater than 0 corresponding y i can tend to minus infinity and objectivity to

minus  infinity.  Therefore,  the  minimum  value,  therefore,  now  summarizing  this

minimum value of this is equal to c bar transpose inverse b bar if A inverse transpose c

bar is component wise less than equal to 0; this is equal to minus infinity otherwise.
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That is otherwise means, if any element if any element of A inverse transpose c bar is if

any element of A bar inverse transpose c bar is greater than 0 alright. So, that is basically

the solution to this optimization, what optimization problem. What is interesting about

this? This is very insightful what is a seemingly complex optimization problem, can be

given I mean the solution to the seemingly complex optimization problem can be found

in a very elegant fashion and it yields a lot of important insights alright.

So,  these  examples  hopefully  helped  you  better  understand  the  different  aspects  of

different facets of convex optimization problems, how to solve them and the valuable

insights that they are alright. So, let us stop here.

Thank you very much.


