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Hello welcome to another module in this massive open online course. So, we are looking

at KKT conditions to solve an optimization problem, we have looked at an application a

specific  application  of  KKT conditions.  Now, let  us  look  at  an  example  that  is  the

application in  MIMO optimal  MIMO power allocation,  let  us look at  an example to

better understand this paradigm alright.

(Refer Slide Time: 00:33)

So, what you want to do today is we want to look at an example for the optimal, we have

to look at an example about optimal MIMO power allocation ok. Let us consider the

following, now consider the MIMO system, now remember each MIMO channel can be

represented by the equivalent channel matrix. So, we have the channel 1 2 1, this is very

simple MIMO channel, let us say this is our MIMO channel, this is our MIMO channel

matrix ok, you can immediately see that this is a 2 cross 2 MIMO channel. So, this r

cross t so, this implies r equal to 2 t equal to 2. So, basically number of receive antennas

equal so, we have 2 receive antennas.



(Refer Slide Time: 01:55)

So, this implies 2 receive antennas 2 transmit antennas so on. And, what we want to do is

we  want  to  allocate  power  optimally  to  the  various  modes  of  this  MIMO  channel.

Remember  the  modes  are  given  by  the  singular  value  decomposition  alright,  these

correspond to the channels with the gain sigma 1 sigma 2 and so on alright.

And we have to allocate power optimally to these different modes. Let us consider a total

power 4 and the noise power remember, we also need knowledge of the noise power

sigma square equals let us say 3 dB 3 decibels which means sigma square equals 2 ok.

(Refer Slide Time: 03:10)



And  remember  we  have  seen  optimal  power  allocation  correct,  this  starts  with  the

singular value decomposition correct.

(Refer Slide Time: 03:21)

So, we have log 1 plus P i alpha i divided by sigma log of 1 plus here P i alpha i divided

by actually let us start with the brief description of the MIMO system.

(Refer Slide Time: 03:29)

So,  what  we have is  let  us  consider  first  the MIMO channel,  remember  MIMO and

MIMO stands for this stands for Multiple Input Multiple Output system, which means



that  basically  you  have  a  wireless  communication  system  with  multiple  transmit

antennas.

(Refer Slide Time: 04:18)

And you have multiple transmit antennas and multiple receive antennas ok. And so, you

have schematically you can present, then we have seen this before you have the receiver

with multiple receive antennas. So, this is your receiver you have the transmitter with

multiple transmit antennas and this is the MIMO channel and so, let us say we have T or

R receive antennas and this quantity t equals number of transmit antenna.

Now, what we want to do is we want to come up with a framework for optimal power

allocation.  So, remember we have seen the optimal power allocation problem, that is

which is as follows that is we have a total power P total transmit power P. And we have a

set  of  parallel  channels  each  given  by  alpha  i  and  we  want  to  allocate  the  power

optimally amongst this parallel channel so, as to maximize the total bit rate that can be

transmitted across this channel.

That is the sum, that is the sum rate of this wireless channel that is the power of problem

of optimal power allocation. Now, for that first we have to see how this MIMO channel

can be decomposed into a set of parallel channels, because only then one can talk about

optimal power allocation correct. So, let us proceed in that direction first starting first

developing a framework to decompose, this MIMO channel, this seeming I mean it is not



obvious what the set  of parallel  channels is in the context of this  MIMO channel  or

multiple input multiple output wireless communication channel ok.
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For that, now first realize that and we have probably seen this before that is the received

symbol vector y is given as y equals H x bar for this MIMO system, where y bar equals y

1 y 2 y r these are the r received symbols across the r receive antennas. H which is now a

matrix times the transmit vector remember you have t transmit antennas so, you have t t

transmit symbols plus n bar which is the thermal noise samples additive white Gaussian

noise samples at the r receive antennas.

So, this is your vector y bar which comprises of your r receive symbols, this is your

vector x bar this is your vector n bar. And this is the MIMO channel matrix H, which is

now you can see it relates r receive symbol vector r to a transmit symbol vector t or

transmit symbol vector x bar of dimension t. So, this has to be naturally of dimension r

cross t, where r is a number of receive antennas t is the number of transmit antennas.

So, this is an r cross t MIMO channel matrix. And for this MIMO channel matrix you

have the coefficients h 1 1 h 1 2 h 2 1 so on. This one last row first column will be h r 1

last column first row will be h 1 t and finally, last row last column will be h r comma t.

So, h ij is the channel coefficient between ith receive antennas. So, let me just write that

between ith RX antenna and jth ith RX antenna and jth transmit ith receive antenna and

jth  transmit  antenna.  And  now the  key  to  understand  this  decomposition  of  MIMO



channel  into  a  set  of  parallel  channels  is  what  is  known  as  a  singular  value

decomposition alright.

So, we will use this technique of singular value decomposition, which we have probably

briefly referred to once earlier in the context of optimal beam forming. We will use this

construct of singular value decomposition and subsequently demonstrate optimal power

allocation, for this MIMO that is multiple input multiple output wireless channel ok.

(Refer Slide Time: 10:24)

And so, this is an important concept in fact, this is an important concept that arises or this

is an important technique or we can think of an important decomposition, that has several

applications in the context of signal processing and wireless communication. The theory

is  general  so,  this  is  termed  as  singular  value,  this  is  termed  as  singular  value

decomposition ok.

Now, in a singular value decomposition what we do is given this channel matrix H, you

decompose this as a product of 3 matrices U sigma V hermitian, consider now for the

sake of simplicity we considered this to be an r cross t matrix with r greater than equal to

t  just  for the  sake of  simplicity  all  those singular  value  decomposition  itself  is  very

general.  And  can  be  applied  for  any  general  channel  matrix,  we  considering  for

simplicity we are considering a scenario with r greater than or equal to t.



Now, this matrix U has the following property U can this is an r cross t matrix sigma is a

t cross t diagonal matrix. And V Hermitian is again a t cross t and this is a unitary matrix,

this is a unitary matrix. 

(Refer Slide Time: 11:53)

Now, U has orthonormal columns, orthonormal columns which implies that each column

the  columns  are  orthogonalities  are  the  unit  norm and  therefore,  if  you  perform U

Hermitian U you will get identity. Now, V is a unitary matrix that implies that which

implies that V Hermitian V equals V V Hermitian equals identity so, V equals a unitary

matrix.
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And further this quantity sigma is a diagonal matrix of what are known as singular value.

So, sigma 1 sigma 2 up to sigma t each of this quantity sigma i is non negative that is it

greater than equal to 0. And these are arranged in decreasing order that is sigma 1 is

greater than or equal to sigma 2 is greater than or equal to sigma t. So, these are arranged

in its important to realize that these are arranged in, these are arranged in decreasing

order ok.

(Refer Slide Time: 13:53)



And therefore now you can write it has the matrix H equals u which contains r cross t

which means it contains t columns each of size r u 1 bar u 2 bar so, on up to u t bar

which are orthonormal columns. 

So,  this  is  your  matrix  U times  the  diagonal  matrix  sigma,  which  contains  the non-

negative singular values in decreasing order into the matrix V Hermitian, which contains

the rows t rows and naturally these are also orthonormal, since V is a unitary matrix so,

these rows are also that is.

(Refer Slide Time: 14:54)

So, this is your V Hermitian V 1 bar V 2 bar V t bar these are orthonormal rows, these

are orthonormal rows ok. Now, in fact we have seen this earlier in fact, what we have

seen is precisely if you remember, we have seen that u one bar this is the optimal receive

beam former for the MIMO system. When you talk about MIMO, we have mentioned

briefly u 1 bar is the optimal receive beam former in fact, u 1 bar is the principle that is

principle eigenvector, there is a eigenvector corresponding to the largest singular value of

H H Hermitian ok.

So, u 1 bar if you look at it principle eigenvector and V 1 bar equals optimal transmit

beam former, that is it maximizes again optimal receive beam former optimal TX beam

former, that is also equal to principle eigenvector of H Hermitian H H Hermitian H ok.

Now, for  the  parallel  decomposition  into  parallel  channels,  the  MIMO  transmission

scheme is as follows.
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Now let  us  look  at  the  following  MIMO transmission  scheme.  What  is  the  MIMO

transmission scheme? Now, remember you have y bar received signal vector equals H x

bar plus n bar and we have the singular value decomposition.

So, I can write H as U sigma V Hermitian x bar plus n bar, now what I am going to do is

the step one first step at the receiver, I am going to process with U Hermitian ok. So, I

am going to  multiply  y bar  with  U Hermitian  to  get  y  tilde.  So,  this  is  my receive

processing. 

(Refer Slide Time: 17:43)



This  is  my  receive  processing  so,  y  tilde  equals  U  Hermitian  let  us  substitute  the

expression for y bar which is U sigma V hermitian, that is H nothing, but H times x bar.

Now, if you look at this you have U Hermitian U which is identity. So, what remains is

sigma V Hermitian X bar plus U Hermitian n bar, which we will  call  as n tilde ok,

because remember U has orthonormal column. So, it satisfies the property U Hermitian

U is identity. So, we have U Hermitian U is identity so, implying that we have sigma V

Hermitian x bar which is  sigma V Hermitian x bar plus n tilde,  that is  after  receive

processing by U Hermitian or multiplying by U Hermitian at the receiver.

Now, what we are going to do is similarly at the transmitter even before transmission of

x bar, we are going to employ a pre processing operation or what is also known as a pre

coding operation and that is key. So, MIMO reception processing can be done at both

ends one is at the transmitter and the receiver the receiver what operation at receiver is

receive  combining  or  post  processing.  The  operation  at  the  transmitter  is  either

preprocessing or pre coding that is your pre coding the symbols prior to transmission

alright.

(Refer Slide Time: 19:36)

So, x bar you pre code them x bar equals V times x tilde, this is a pre coding operation

this V equals the pre coding matrix.



(Refer Slide Time: 20:02)

Just write this as pre coding operation ok.

(Refer Slide Time: 20:16)

And now if you substitute x bar equal to V x tilde so, what you have y tilde equals U or

V is gone sigma V Hermitian x bar is now V x tilde. So, substitute V x tilde plus n tilde.

Now, we use  the other  property V Hermitian  V equals  identity  since V is  a  unitary

matrix. So, this will become sigma V Hermitian V sigma times x tilde plus n tilde ok. So,

this will be y 1 tilde y 2 tilde y t tilde in fact, just write it out explicitly. So, you have y



tilde equals sigma times x 1 tilde x 2 tilde that is the original symbols before pre coding

which is what we are interested in plus you have your n tilde vector.

(Refer Slide Time: 21:52)

Now, if you can look now we have a set of parallel channels now this is our set of now if

we observe closely, you have y 1 tilde equals sigma one times x 1 tilde y 2 tilde equals

sigma 2 times. So, this is our set this diagonal matrix in fact, is nothing, but our set of

parallel  channels that is so, singular value decomposition is what gives us our set  of

parallel channels.

In fact, you will observe something interesting the gain of the first channel is sigma 1

square,  that is alpha a alpha 1 gain of the second channel is sigma 2 square alpha 2 gain

of the last channel is sigma t square alpha t and in fact, since sigma’s are arranged in

decreasing order this implies the alpha 1 this channel 1 is stronger than channel 2 is

stronger than channel 3 and so on. Similar to the paradigm, that we have seen in the

original,  optimal  power  optimal  power  allocation  module  ok  so,  the  framework  for

optimal power allocation.
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So, what we have is we have a set of parallel channels y 1 equals or y 1 tilde equals

sigma 1 x 1 tilde plus n 1s tilde y 2 tilde equals sigma 2 x 2 tilde y t tilde equals sigma t x

t tilde plus n t tilde and this is your set of t parallel channels. 

This is the set of t parallel channels correct, we have well if you look at the ith channel

this is y i tilde equals sigma i xi tilde plus n i tilde gain of ith channel sigma is the

amplitude gain. So, the power gain will be sigma i square, equals sigma i square which is

alpha i in your optimal power allocation framework, for the optimal power allocation

framework alpha i is sigma i square.
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And therefore, now if you have expected that is power allocated to ith channel, that is

expected magnitude x i tilde square equals P i, what is P i this is power allocated to ith

stream or  ith  channel,  this  is  the power at  which you are transmitting  symbols over

channel i that is again sigma i square which is alpha i. And noise power we have already

seen that is sigma square. Now, therefore SNR of ith channel equals when P i alpha i

which is sigma i square divided by sigma square.
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The rate maximum rate of ith channel is log to the base 2 right, log to the base 2 1 plus P

i sigma i square divided by sigma square. So, optimization and sum rate will be sum

across all the t parallel channels, this is the sum rate of the system. The maximum sum

rate will  be when you maximize,  this  when you maximize  this  subject  to the power

constraint.

That summation of i equal to 1 to i t P i less than equal to P, this is your total power or

this you can talk of this as total power constraint or you can say summation of P i equals

P. This is your total power constraint P i greater than or equal to 0, or rather minus P i

less than or equal to 0, that is vector P bar is component wise less than equal to 0. This is

the non-negativity power constraint.

(Refer Slide Time: 27:13)

And we have already solved this problem P i or P i star, this is given by the water filling

power allocation that is one over nu minus sigma square by alpha i plus, where plus

indicate that it is the same quantity if it is greater than or equal to 0 if it is less than that is

this is equal to your maximum of 1 over nu minus sigma square by alpha right comma 0

which is nothing. But, if you substitute for alpha i as sigma i square, that is the sigma i is

the singular value ith singular value this is 1 by nu minus sigma i sigma square divided

by sigma i square plus, this is P i star. This optimal power allocation allocated to the ith

mode.
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These are known as the modes of the MIMO channel optimal  power or ith mode of

MIMO channel ok. So, thus what we have shown is that the same water filling paradigm

and now this is remember this is nothing, but the water filling power allocation. So, the

same water filling paradigm the water filling optimal, water filling water filling water

filling technique can be used for optimal MIMO power allocation.

So,  thus  water  filling  thus  the  water  filling  technique  can  be  employed  for  optimal

MIMO power allocation and, if you observe that these channels the parallel channels are

already arranged in the decreasing order of k. So, sigma one square is larger than or

equal to greater than or equal to sigma 2 square greater than or equal to so, on until

sigma t square. So, naturally first channel is allocated a larger fraction of the power,

compared to the second channel compared to the last channel. And there might be some

channels remember which are below the water level 1 over nu which are not allocated

any power.

And in fact, the technique to find the nu the Lagrange multiplier nu is through the total

power constraint correct, 1 equal to 1 to t sigma square y sigma i square plus equal to P

ok.
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Solving this so, you solve this. So, solve this equation solve this to obtain. So, this is the

framework  for  optimal  power  allocation.  So,  the  key  idea  here  is  that  you  use  the

singular value decomposition to decompose, the MIMO channel it was set of parallel

channels with the gains given by the squares of the singular values. And naturally once

you get these alpha is 1 can use the water filling technique for optimal power allocation,

given total power P and noise power sigma square alright.  So, we will stop here and

continue in the next lecture.

Thank you very much. 


