
Applied Optimization for Wireless, Machine Learning, Big Data
Prof. Aditya K. Jagannatham

Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Lecture – 65
Example problem on Strong Duality

Hello welcome to another module in this massive open online course. So, we are looking

at duality and we have seen the concept of strong duality that is for any optimization

problem, standard written in the standard form, one can come up with an equivalent dual

optimization problem which is convex.

You can solve that and to obtain the optimal point d star and if strong duality holds then,

now usually d star is less than equal to P star where P star is the optimal value of the

original primal problem, but when strong duality holds which is usually true for a convex

optimization problem we have d star equals P star ok. And now let us understand that

through an example alright.
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So, let us look at an example to understand the same, this explore duality, in particular let

us look at the minimum norm problem that we have seen so far. So, as an example let us

look at the minimum norm problem and the problem is the following minimize norm of a

vector A bar. So, this is your objective, subject to the constraint A x bar equals b bar ok.



And you can see these are only equality constraints, there is no inequality constraint ok.

So, this is only an equality there is only an equality constraint to approach this problem

let us form.
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Now, look at this has although this might seem like a single constraint, if A is an m cross

n matrix ok, which means it has m rows a 2 bar transpose a m bar transpose correct.

It is an m cross n matrix this is a m bar transpose and x bar equals b bar so, in reality

there are m constraints ok. So, there are m equality constraints one for each row of the

matrix A. And therefore, the Lagrange multipliers for each equality constraint, you need

to have one Lagrange multiplier for each equality constraint so, you have a vector nu 1

nu 2 nu m where nu m is or nu i equals Lagrange multiplier for the constraint, a bar

transpose x bar equals bi ok.

So, this is what the ith constraint alright.  So, you have m constraint m constraints  1

corresponding to each row of the matrix a the corresponding Lagrange multiplier is nu i

alright  and therefore,  you have  the  vector,  nu bar  which  comprises  of  the  Lagrange

multipliers nu 1 nu 2 up to nu r.
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Now, the Lagrangian can be formulated as follows, in the Lagrangian that is a L of x bar

and only nu bar is no lambda bar, because there is no there are no inequality constraints.

So, this is basically the objective function now, instead of minimizing norm x 1 can also

minimize norm x bar square which is basically equal to x bar transpose x bar ok. And

therefore, this you can write the objective function was x bar transpose x bar plus nu bar

transpose ok. So, basically each Lagrange multiplier  is multiplying the corresponding

law A x bar minus b bar ok.

So, this nu bar transpose is basically your row vector nu 1 nu 2 up to so, you have each

Lagrange multiplier multiplied in a corresponding row. And then you are taking the sum

that is what this nu bar transpose is doing. Now, we find the minimum all right in the

first type find minimum of the Lagrange multiplier of the Lagrangian of the Lagrangian

with respect to x bar.

So, which means we have to compute the partial derivative with respect to x bar and set

it equal to 0 ok. So, compute the partial derivative with respect to x bar set it equal to 0,

we know how to differentiate this vector, this function of a vector x bar transpose x bar

derivative with respect to x bar is twice x bar plus nu bar transpose A into x bar.

So, this is basically your x bar transpose x bar plus nu bar transpose A x bar minus nu bar

transpose b bar. Now of course, the derivative of nu bar transpose b bar with respect x



bar is 0, derivative of nu bar transpose that is c transpose x bar with respect to x bar is c

bar, which is basically this is your c bar transpose. So, derivative is c bar which means it

is the transpose that is nu bar transpose A, this is c transpose. So, transpose of this plus or

minus derivative of nu bar transpose b bar with respect to x bar is 0 ok.

And this we are setting equal to 0 to find the optimal point, this implies 2 x bar plus A

transpose nu bar equal to 0 which implies that x bar equals minus half A transpose nu bar

ok. So, x bar equals minus half A transpose nu ok. So, that is basically the x bar for

which  the  minimum  is  achieved  for  the  Lagrangian  corresponding  to  the  original

optimization problem ok. Now, to get the dual optimization problem is substitute this.
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So, now, what we do is g of nu is basically nothing, but you substitute, this that is the

minimum value of the Lagrangian ok, for that you substitute the x bar so, that is so in

this remember this is your original optimization problem x bar transpose x bar plus nu

bar transpose A x bar minus b bar in this what we do is we substitute x bar equals minus

half A transpose nu bar.

So, that will give you g of nu bar equals well minus half A transpose nu bar transpose

minus half A transpose nu bar plus nu bar transpose A minus half A transpose nu bar

minus b bar. So, wherever there is x bar i am substituting minus half A transpose nu bar.
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And this is equal to 1 by 4 nu bar transpose A A transpose nu bar minus half nu bar

transpose A A transpose nu bar minus nu bar transpose b bar. And now if you simplify it

what you will get is basically minus 1 by 4 nu bar transpose A, A transpose nu bar minus

nu bar transpose b bar. So, this is your Lagrangian function.

(Refer Slide Time: 08:59)

So, let me just write this again when minimizing the Lagrangian, what you are obtaining

is a Lagrange dual function, which is minus 1 by 4 nu bar transpose A A transpose nu bar

minus nu bar transpose b bar ok. So, this is your Lagrange dual function ok. And this will



always give a lower bound, now remember this will always give a lower bound. So, g of

nu bar is always less than or equal to P star for any value of nu bar, we will have that g of

nu bar that is the value of this Lagrange dual function alright. Remember, there are no

inequality constraints so, the there is no Lagrange multiplier or the there is no Lagrange

multiplier vector lambda bar.

So, this g of nu bar is a Lagrange dual function alright in fact, this is g d of nu bar so,

which is g d of nu bar is always less than equal to P star, where P star equals optimal

value of the original or primal problem ok. So, this is always going to be a lower bound.

Now, what is the best lower bound and look at this there is also a concave function,

because if you look at this you can see here, this is minus of the form minus nu bar A A

transpose nu bar. So, this is a PSD matrix positive semi definite so, nu bar transpose A A

transpose  nu  bar  is  convex  minus  nu  bar  transpose  A A transpose  nu  bar  equals  is

concave ok.

So, this is a concave so, you can see that this is clearly and this is of course, concave

function nu bar transpose b bar which is basically a linear function so, the base which is

also concave so, basically it is a concave. So, it is a g d nu bar so, if you look at this is a

concave function ok. And this is a concave function this is always a lower bound for P

star.
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Now, one can ask what is the best lower bound the best lower bound is given by, the best

lower bound is given by the maximum value. Once again note that there is no there are

no inequality constraints therefore, we do not have the constraint that lambda bar has to

be component wise greater than equal to 0 all right. So, I simply have to maximize this

Lagrangian dual function which is g d of nu bar.

This is maximized minus 1 by 4 nu bar transpose A A transpose nu bar minus nu bar

transpose b bar. And now if your different to maximize this, if you differentiate this with

respect to nu bar what you get is well this is minus 1 by 4 and nu bar transpose A A

transpose nu bar. So, the derivative of that is twice A A transpose nu bar minus nu bar

transpose b bar derivative of that with respect to nu bar is simply b bar.
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And now you equate it to 0 which implies the optimal value of nu bar for which this

Lagrangian,  before  which  the  dual  function  is  maximized  is  minus  2 A A transpose

inverse into b bar. So, we have nu bar that is minus 2 A A transpose inverse into b bar ok.

That is the value of nu bar for which the Lagrange dual function is maximized. Now,

therefore, the optimal value d star this is the optimal value of the dual problem, simply

substitute nu bar in the dual problem, that is basically this nu bar value of nu bar in the

dual problem.
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That is minus 1 by 4 nu bar transpose A A transpose nu bar minus nu bar transpose b bar

so, what you do here is you substitute nu bar equals minus 2 A A transpose inverse into b

bar. So, if you substitute that what you have is it is a little cumbersome, but you can write

this so, nu bar transpose which is minus 2 A A transpose inverse b bar transpose into A A

transpose into nu bar.
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So, that is minus 2 A A transpose inverse into b bar, minus nu bar transpose b bar so that

is minus 2 A A transpose inverse b bar transpose of that that is nu bar transpose b bar.

And if you simplify this what you will get is minus b bar transpose A A transpose inverse

into b bar plus twice b bar transpose, you can simplify this A A transpose inverse into b

bar and that is basically b bar transpose A A transpose inverse into b bar and that is your

d star, that is the optimal value of the dual problem ok. So, this is d star.
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This is the optimal value of the; this is the optimal value of the dual problem ok. So, this

is d star which is of course, always less than or equal to P star. Now, let us see what is P

star that is optimal value of the primal problem we already know that, because you solve

the minimum norm problem alright. So, this is the optimal value of the dual problem.

Now, let us go back to the primal problem, remember the primal problem is minimize

norm x bar square, that is x bar transpose x bar subject to the constraint A x bar equals b

bar.
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And we know that the optimal solution for this is x bar equals this we know from the

previous modules that optimal solution for the minimum norm problem is A transpose A

A transpose inverse into b bar.

And now P star which is optimal value of the dual problem that is basically your x bar

transpose x bar. And here you substitute x bar equals A transpose A A transpose inverse

into b bar. And that gives you what does that give you that use u well that gives you A

transpose A A transpose inverse b bar transpose into A transpose A A transpose inverse b

bar, which you can simplify and if you simplify it no wonder what you are going to

observe is this is B bar transpose A A transpose inverse into b bar.
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This is P star and from what you can observe above this also exactly equal d star b b bar

transpose A A transpose inverse b bar so, this is in fact exactly equal to d star so, we have

P star equals d star and therefore, strong duality holds and in fact, one can immediately

say that, there is a value of the dual problem for because the dual optimization.

Because the dual objective is always less than or equal to the primal,  dual objective

always is a lower bound for the primal objective function. So, the dual objective in the

primal object were coinciding that implies that, that point is the maximum value of the

dual objective function dual optimization problem and is also the corresponding point is

the optimal value of the primal objective.



And in this case P star we have P star equal to d star and therefore, strong duality. And in

fact,  the  optimization  problem  is  convex  and  that  is  what  we  have  set  for  convex

optimization  problem,  typically  strong  duality  holds.  So,  P star  equal  to  d  star  this

implies that strong, strong duality holds and that is what we have already seen that strong

duality holds for this optimization problem ok. So, this is one of the simplest and most

elegant optimization problems that is the (Refer Time: 19:51). Let us look at another

interesting problem and that problem is as follows.
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Let us look at another interesting problem and that is a linear program let us see what

duality has to tell us. Now, for a linear programs look at the standard linear program or

one of the versions, that is minimize the linear objective c bar transpose x bar subject to

A x bar equal to b bar these are the equality constraints, and then let us say that x bar is

component wise greater than equal to 0 each component of the vector x bar is greater

than equal to 0. You can write this as a standard from convex optimization problem, by

saying each component of minus x bar is less than or equal to 0 ok.
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Now, the Lagrangian of this can be formulated as x bar, now you have both inequality

and equality constraints. So, the Lagrangian will be objective function a x bar I am sorry

c bar transpose x bar plus 1 Lagrange multiplier for each equality constraint, that is your

same as before nu bar transpose A x bar minus b bar nu bar is the vector comprising of

the Lagrange multiplier for the equality constraint plus lambda bar transpose 1 Lagrange

multiplier for each inequality constraint minus x bar ok, equals c bar transpose x bar plus

nu bar transpose A x bar minus b bar plus lambda bar transpose minus x bar ok. 

Each in fact, the size of the vector lambda bar is equal to x bar, because you have one

Lagrange multiplier for each component of x i less than or greater than equal to 0 ok, we

can directly write this as minus lambda bar transpose x bar. Now, we have to take the

minimum of the Lagrangian right and typically for that we differentiate it with respect to

the vector x bar, but since this is a linear this is an affine function we will follow a

slightly different approach.
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And that is as follows and interestingly, if you separate the terms, if you write this as the

terms corresponding to x bar plus nu bar transpose A minus lambda bar transpose x bar

minus and the constant term.

You can see this is affine in x bar which is basically it  is a, you can see this  is the

equation  of  this  is  the  equation  of  basically  a  hyperplane,  this  is  the  equation  of  a

hyperplane correct. Now, if you see what is now what we have to do is now we have to

minimize this ok. And what you will observe is, you will observe something interesting.

Now, this is an affine function it is like a line correct. 
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So, let us look at this line if this line has a slope, then the minimum value of this will

always be equal to minus infinity, because one of the ends will always be minus infinity.

Only if the line is parallel, then the minimum value that is the line is a constant ok.

And then the minimum value equal to c that is a constant ok. So, this is very interesting,

because it is affine if the vector multiplying x bar is non zero, then the minimum value is

always going to be minus infinity right in that case it has a slope. If that is 0 that is a

vector multiplying x bar is equal to 0, then the minimum value is the constant which in

this case is minus nu bar transpose b bar ok.
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So, with that observation we have the minimum of the Lagrangian,  this is L if c bar

transpose plus nu bar transpose A minus lambda bar transpose is not equal to so, the

minimum is minus infinity, if c bar transpose plus nu bar transpose A minus lambda bar

transpose equal to 0, that is this vector which is multiplying x bar. This vector is not

equal to 0 then the minimum is minus infinity, on the other hand if that vector is 0 then

the minimum is simply the constant that is minus nu bar transpose b bar. 

Now, of course, minus infinity is always a lower bound for any optimization problem all

right. So, this is your Lagrange dual function minus infinity is always a lower bound

correct, it is very uninteresting the interesting lower bound occurs for this that is minus

nu bar transpose b bar. And the best lower bound is a where ever is when you maximize

this with respect to nu bar lambda bar.
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So, the dual optimization problem can be equivalently written as maximize minus nu bar

transpose b bar subject to the constraint, c bar transpose plus nu r transpose A minus

lambda bar equal to 0. And of course, we always have this constraint as well that is the

Lagrange  multipliers  corresponding  to  the  inequality  constraint,  or  component  wise

greater than equal to 0 that is each Lagrange multiplier lambda is greater than equal to 0. 

Now, you  can  see  that  c  bar  transpose  plus  nu  bar  transpose  A minus  lambda  bar

transpose equal to 0. So, if you will now we can simplify this further. So, this implies,

what does this imply? This implies that c bar transpose plus nu bar transpose A equal to

lambda bar transpose which is component wise greater than equal to 0. So, this implies

that c bar transpose plus nu bar transpose A is component wise greater than equal to 0 ok.
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And therefore, now you can simplify this optimization problem as simply this, maximize

minus nu bar transpose b bar subject to the constraint that c bar transpose plus nu bar

transpose  A,  component  wise  greater  than  equal  to  0  that  is  and  whatever  is  c  bar

transpose plus nu bar transpose A, that is equal to now this quantity is equal to itself

equal to you can set this quantity. Once you obtain this quantity you can set this quantity

equal to lambda bar transpose alright.

And in fact, I am just going to take the transpose of this. So, I am just going to take I can

also write this as this is a row vector, I can write this as minus nu bar transpose b bar

subject to the constraint A transpose nu bar plus c bar, this is component wise greater

than equal to 0. And this is the equivalent dual optimization problem yes, this is the dual

optimization problem.

And since this is a convex optimization problem, that is the original problem is a linear

program the dual optimization problem you can also see is a linear program, that is the

dual of a linear program is a linear program is a convex optimization problem. Therefore,

strong  duality  holds  P  star  optimum  value  of  the  original  dual  optimal;  original

optimization problem, you will see is equal to the d star which is optimal value of the

equivalent  dual  optimization  all  right.  So,  we  will  stop  here  and  continue  in  the

subsequent modules.

Thank you very much. 


	

