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Hello.  Welcome  to  another  model  in  this  massive  open  online  course.  And  we  are

looking  at  the  concept  of  duality  for  optimization  alright.  So,  let  us  continue  our

discussion. And what we have shown is that well this dual function that is the Lagrange

dual function g d lambda bar comma nu bar, we have shown that this is concave correct.

And now let for a moment let us go to the original optimization problem. Let us go back

the original possibly not known not necessarily convex optimization problem.
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And that is as follows what we are doing is we are minimizing g naught of x bar, subject

to  a constraint  g i  x bar  less than equal  to 0,  i  equals 1,  2 up to l  and the equality

constraint g j tilde x bar equals 0, j equals to 1, 2 up to m. This is a original optimization

problem. Now, let P star denote the optimal value of this original optimization problem

that is if you perform this optimization, we are obtain P star as the optimal value of the

objective  function  correct  subject  to  the  constraint  of  this  original  ok.  So,  P star  a

denoting by P star the optimal value of the original optimization problem that is the what

we  have  obtained  as  optimal  view  if  we  solve  this  original,  possibly  non-convex

optimization problem ok.
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Now, the interesting result that you want to show is that and this is the very interesting,

and very important property of the dual. We want to show that if this vector of Lagrange

multiplier associated with the inequality constraints that is lambda bar is component wise

greater than 0 that means, that each lambda i right so each lambda i is greater than equal

to 0 or i equals to 1, 2 up to l. Remember lambdas are the Lagrange multiplier associates

with the inequality constraints.

Now, each lambda is greater than equal to 0 all right, then the dual that is g d of lambda

bar, nu bar that is less than always less than or equal to P star, which is basically the

optimal value of the original optimization problem. And this is a very important property.

This is a very important property of the dual function, which states at the dual function

that is if the Lagrange multiplier  lambda i are greater than equal to 0. Then the dual

function g d lambda bar, nu bar is always less than equal to P star, which is the optimal

value of the original optimization problem and this is the very interesting property.
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Let us try to understand, why this arise ok. Let us try to briefly demonstrate this, so this

is the very important properties. So, let us try to demonstrate this, so observe now let or

let us starts with the following. Let x tilde be any feasible point. Feasible point mean, it

satisfies the constraint. Satisfies the constraint is sense that you have g i of x tilde is less

than or equal to 0, i equals 1 up to l. And g j tilde of x tilde equals 0; j equals 1 up to m

ok.

So, this is a feasibles of point in the sense that this satisfies the constraints and therefore,

now if you look at the Lagrange dual if you look at the Lagrangian correct L of x tilde

lambda  bar,  nu  bar,  now  remember  you  have  to  keep  in  mind  that  lambda  bar  is

component wise greater than equal to 0, which means each element lambda is greater

than or equal to 0.
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So, this is basically now let me just write it a little bigger, so that you can observe this.

So, this is g naught x tilde plus summation i equals to 1 to l lambda i g i x tilde plus

summation j equals 1 to m nu j g j tilde x tilde. Now, what you have observe is now g

naught x tilde plus now look at these each lambda i is greater than equal to 0. X tilde is a

feasible point, we have seen that each g i of x tilde is less than or equal to 0, which

implies that lambda i that is we look at these net quantity lambda is greater than equal to

0, g i of x tilde is less than or equal to 0. Implies this lambda i into g i of x tilde is less

than or equal to 0. 

On the other hand g j of x tilde equal to 0, we do not care about nu j. g j of x tilde this is

equal to 0. This implies that this whole quantity nu j into g j of x tilde this is equal to 0.
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So, we have this is equal to g naught of x tilde plus some quantity that is less than or

equal to 0 plus some quantity that is equal to 0. And so your g naught of x tilde plus

some quantity is less than or equal to 0, which is the negative quantity, which implies

that  this  is  therefore  less  than or  equal  to  g naught  of  x  tilde  that  is  basically  your

quantity on the left this is the Lagrangian L of x tilde lambda bar, nu bar this is basically.

So, this original this is basically your the Lagrangian for the optimization problem, this is

less than or equal to g naught of x tilde for any feasible point.

So, this holds for now remember this holds for any feasible point. And as long as all the

lambda i is are greater than that is lambda bar is component wise greater than equal to 0

very good all right. So, we have shown that the Lagrangian dual function at any feasible

point x tilde, when the vector each lambda is greater than equal to 0 is always less than

or equal to the or is always is always less than or equal to g naught of x tilde that is the

value of objective function at that point x tilde at that feasible point x tilde.
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Now, now therefore what we have is g naught of just rewriting this g naught of x tilde

greater than or equal to the Lagrangian ok. Now, g naught of x tilde is greater than or

equal to l of I am sorry the Lagrangian at x tilde, which implies that this is greater than or

equal to the minimum over all such feasible points ok. So, what you have now shown

that g naught of x tilde is greater than or equal to Lagrangian at x tilde. And therefore,

you take the minimum of the Lagrangian or the set of all feasible points x tilde.

Naturally g naught of x tilde is going to be greater than equal to the minimum value on

the right hand side. And the minimum value of the right hand side is nothing but the

Lagrangian dual function. So, therefore this is basically nothing but this is if we take the

minimum that is your g d lambda bar, nu bar, so that is basically equal to your g d

lambda bar, nu bar. And therefore that implies that, your g naught of x tilde is greater

than or equal to g d ok. So, this is greater than or equal to correct this is greater than

equal to g d lambda bar, nu bar for any feasible point x tilde for any feasible x tilde. 
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Now, naturally if you take the minimum of this, so for any feasible x tilde, this is greater

than or equal to g d lambda. So, if we take the minimum of g naught x tilde over the set

of all feasible points, this is going to be greater than or equal to. Now, this holds for any

x tilde correct, this is an equality holds for any x tilde g naught of x tilde is greater than

or equal to the dual function lambda bar g d of lambda bar, nu bar. Naturally at  the

optimal that is if we take the minimum over the set of all,  that is this holds for any

feasible point x tilde.

So, naturally it holds for that feasible point x tilde at which the minimum is achieved,

correct that is the minimum overall said of all feasible point x tilde g d of x tilde g naught

of x tilde that is nothing but P star, which is the optimal value of the original optimization

problem. So, this is basically your P star, which is therefore greater than equal to less

than. 

This is basically nothing but this minimum this is equal to P star, this is the optimal value

of  the  original  optimization  problem.  This  is  the  optimal  value  of  the  optimization

problem ok. So, P star is greater than or equal to g d lambda bar, nu bar ok.
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Since, P star is minimum of since basically P star is the since P star equals the minimum

of the objective of g naught x tilde over set of all feasible points x tilde or the set that

contains all the feasible points x tilde that is what is meant by this. And therefore, you

have g d of lambda bar, nu bar is less than or equal to P star ok.

Now, mind you have to still keep in mind that this holds to only if lambda bar that is you

also have that let me just try these things together, for lambda bar greater than or equal to

that is component wise that is each component of the vector lambda bar greater than

equal to 0, which is means that each Lagrangian multiplier lambda associated with the

inequality constraints is greater than or equal to 0 ok.

So, this basically that and therefore what this shows is g d of this Lagrange dual function

for any lambda bar, nu bar. So, this holds for any lambda bar, nu bar. I mean this holds

for any nu bar and any lambda bar such that each lambda bar is greater than or equal to

0, which means that this Lagrange dual function forms is a lower bound for this P star.

For any lambda bar greater than or equal to 0 that is component wise greater than equal

to 0 and nu bar. This Lagrange dual function is a lower bound for P star that is you can

say that the optimal value of the original optimization problem is always going to be

greater than equal to the Lagrange dual function.
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So,  this  is  basically  a  lower bound,  which  is  basically  optimal  value of  the  original

optimal; lower bound for P star, which is the optimal value of the original optimization

problem ok. So, for any lambda bar greater than for and this is for any nu bar comma

lambda bar component wise greater than equal to component wise now naturally if the

Lagrange dual function is the lower bound, right for any lambda bar component wise

greater than equal to 0 and nu bar.
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One can ask the question, what is the best lower bound, right because look at this we

have this P star, we have this concave function, which is g d of lambda bar, nu bar all

right. This is always lower than P star. One can ask the question, w what is the best lower

bound? Best lower bound is the maximum value of this lower bound, which is you want

to be as close as the optimal value P star.

Because, if you look at it technically, if you look at the lower bound of minus infinity

that is always going to be lower bound right any P star is always going to be, but we

want  the  best  possible  lower bound.  What  is  the lower bound,  which is  as  close as

possible to the P star, so that this gap between the lower bound and P star is minimized so

gap between lower bound and P star is minimum ok. And that is basically given as the

maximum value of the Lagrange dual function g d. Of course, subject to the constraint

now that lambda bar is component wise greater than equal to 0.
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And now we can see the there is  an optimization problem, this  is also (Refer Time:

17:20) best lower bound is also an optimization problem. Finding best lower bound, and

in fact the interesting thing about this, this is the convex optimization problem although

the original problem need not be convex, because this is concave.

So, I can equivalently write this as minimum of g d minus g d lambda bar, so g d lambda

bar, nu bar is concave minus g d lambda bar, nu bar is convex. I can so maximizing g d

lambda bar, nu bar, I can minimize minus g d lambda bar nu bar. Subject to the same



constraint lambda bar is greater than equal to 0. In fact, I can put a negative sign here,

and I can make this reverse minus lambda bar is less than equal to 0. And this is your

standard form convex. So, you can use all the techniques of convex optimization. To

conveniently solve the dual problem, this is known as the dual problem, where you are

optimizing the Lagrange. So, this is basically the interesting dual problem.
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The original problem is termed as the primal problem, primal and dual. So, even if the

primal problem is the non-convex, the dual equivalent dual problem that is derived from

the primal problem is convex. And therefore, one can conveniently use all the techniques

of convex optimization to solve the Lagrange dual problem. So, primal problem is the

dual problem is convex. 
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Even if primal problem is non- convex ok which implies one can conveniently solve the

dual problem using tools of convex optimization, convex optimization tools or convex

optimization solver, and so on. So, one can use all the tools and techniques for convex

optimization available for convex optimization into conveniently solve the dual problem.

And remember, because you are taking the best lower bound that is going to give you

something that is as close as possible the best lower bound.

There is lower bound that is as close as possible to the optimal value P star, but still it is

going to be lower than P star. So, what you get by solving the dual optimization problem

is always going to be a lower bound, you are going to get the best lower bound, but still

it is a lower bound, it is lower than P star ok. Now, when is it equal to P star ok, now it is

always going to be because remember so this is g d lambda bar, nu bar is less than or

equal to P star for all lambda bar greater than equal. 
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So, if we take the maximum of this, remember this holds to for any lambda bar, nu bar

ok. So, at the maximum also which holds for some particular lambda bar, nu bar, this is

going to be less than or equal to P star. So, implies if we take the maximum right, so for

any lambda bar, nu bar less than equal to P star. So, if we take the maximum of this for

some optimal value of lambda bar, nu bar, this is still going to be less than or equal to P

star ok.

And therefore,  this  lower bound if  you called  this  dual  optimization  problem.  If  the

optimal value of this is d star d star, so d star is always going to be less than or equal to P

star  ok.  So,  d  star  is  the  optimal  value  of  the  d  star  is  the  optimal  value  of  dual

optimization (Refer Time: 22:43) P star equals optimal value of the primal problem. This

is the optimal value of the primal problem.
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And this is basically your d star this is basically where the d star, which is the maximum

value of the Lagrange dual function ok. And this gap now that you see between d star

and P star that is your duality gap.
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So, d star is less than equal to P star. And this gap P star minus d star this is your duality,

this is termed as the duality gap. Now, if P star equals d star, that implies P star minus d

star equal to 0, that implies duality gap equals 0. 
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When this happens, it is said that strong duality holds, so this implies that strong duality

holds for the problem.
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Otherwise, if d star is less than equal to P star, this is simply weak duality is simply weak

duality, it is always holds.
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And the special case that P star equal to d star that is we look at this the primal problem

this is  convex ok. So, this  is  your primal  problem, which is  convex. And this  is the

optimal point, which is P star, which is the optimal value of the primal problem. And

then you have the dual, which is concave. And you have the optimal value of the dual

problem, which is so the primal problem is convex. And you have the dual problem or

you have the, which is concave ok. This is equals optimal value of primal problem; this

is optimal value of dual problem ok.
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And when P star equal to d star, when this d star equal to P star, this implies that basically

you are duality gap is 0, implies strong duality holds, this implies that strong this implies

that strong duality holds. When duality gap is 0, strong duality holds for the problem.

And this is typically to loosely speaking the strong duality holds for any convex (Refer

Time: 26:54) although this does not hold. Although one can form the dual optimization

problem, solve the dual optimization problem for any possibly non-convex problem, but

strong duality typically holds only for a convex optimization problem.

So,  one  can  solve  the  primal  problem,  so  this  typically  holds  only  for  a  convex

optimization problem. Let us say that is the theory of duality. So, you have the primal

problem, optimization problem from the Lagranagian dual function all right. View from

the Lagrangian take the (Refer Time: 27:43) or minimum with respect to x, you get the

dual the Lagrange dual function all right, you can take the which always a lower bound

per P star, which is optimal value of the original problem. What is the best lower bound,

you maximize the Lagrange dual function subject to the constraint that lambda bar is

component wise greater than equal to 0 that we will give you d star, which is the optimal

value of the dual optimization problem; d star is always less than equal to P star.

If d star equals P star, then we say that the duality gap is 0, strong duality holds. And this

is typically true for a convex optimization problem. And often solving the dual is either

easier or solving the dual e problem yields valuable insides into the original optimization

problem. It is always a good exercise for the primal problem.

And even though if you are even if you are able to solve the primal problem, it is always

a useful exercise to construct the dual optimization problem solve that see if this solution

to these two match.  And then see what insides the dual optimization problem (Refer

Time: 28:45). So, the primal or dual they always go hand in hand for any optimization

problem in particular for a convex optimization problem, because the duality gap is 0.

So, we will stop here, and continue in the subsequent models.

Thank you very much.


