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Concept of Duality

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking  at  different  topics  and  concepts  in  convex  optimization  and  particularly,

particularly from an applied perspective. In this mode, let us start with a new topic and

that is Duality.
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So what we want to start looking at is a very interesting and a very fundamental concept

of  duality  ok.  And  we have  seen  this  to  some extent  we have  seen  this  informally,

basically what this does is it formalizes the framework of Lagrange multipliers; that we

have been sort of informally employing.

So, far so what is a Lagrange multiplier all right, what is the significance of a Lagrange

multiplier, what does it indicate all right. And what is the formal, I mean how do you

formally define the Lagrange multipliers associated with this problem.

So, that is basically what we are going to see or consider cover now in this when we look

at the concepts  of duality. So now, let  us go back to the standard form optimization



problem,  recall  a  standard  form  a  standard  form  optimization  problem  is  given  as

follows.
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That is, you have the objective function, let us say this is minimize g naught of x bar, this

is  your objective function ok. Subject  to then you have the constraints  you have the

inequality constraints g i of x bar less than equal to 0 i equals 1 to up to l. And the

equality constraints g j tilde of x bar equal to 0 j equals 1 to up to m we have seen this

definition before so these are your constraints ok.

And of course, now this is any standard form optimization problem. In addition we have

seen  that  if  g  naught  is  convex  alright,  the  objective  function  is  convex  correct?

Inequality constraints are convex, and the equality constraints are affine it becomes a

convex optimization problem. So, right now this need not this is not necessarily a convex

optimization problem is simply a standard form this can be any optimization problem,

not necessarily a convex optimization problem.

So, this is keep in mind or bear in mind what we are considering now is not necessarily

of  convex  optimization  problem.  That  is  a  most  general  framework  of  duality  is

applicable even when the problem is non convex ok.
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And that is. In fact, the power or that is in fact, the appeal of this framework of duality

ok. So, this is a standard form optimization problem. Now for this optimization problem

the Lagrangian function for the above optimization problem.

The Lagrangian can be formulated as L of x bar lambda bar nu bar equals the object to g

naught x bar plus, summation i equals 1 to l lambda i g i x bar that is each constraint g i

there is inequality constraint g i x bar multiplied by this lambda i which is the Lagrange

multiplier.

(Refer Slide Time: 05:09)



And the summation plus summation j equals 1 to m nu j g j tilde x bar multiplied each

equality constraint by this quantity learn nu j and take their sum ok. Now these quantities

are the Lagrange multipliers  the lambda i  s.  And we have already seen this  to some

extent. So, these are the Lagrange now these quantities of the Lagrange multipliers.

(Refer Slide Time: 05:55)

What are the Lagrange multipliers? These are the lambda i s that is lambda 1 lambda 2

up to lambda l nu 1 nu 2 up to nu m, these are your Lagrange multipliers. And of course,

these are the Lagrange each lambda i remember lambda i is a Lagrange multiplier for

your g i of x bar all right we are multiplying each g of x bar with lambda i. And each nu j

is the Lagrange multiplier for g j tilde of x bar right.

So, what we are doing is  we are taking g naught x bar objective function plus each

inequality constraint g i x bar multiplied by the Lagrange multiplier lambda i sum plus

each equality constraint g j tilde x bar multiplied by the Lagrange multiplier nu j.

So, this is a weighted sum all right of the objective function and the constraints, and the

weights are basically  the Lagrange multipliers  ok.  So, what  the Lagrangian is  so the

Lagrangian, if you realize it and it is not very difficult Lagrangian that is your L of x bar

comma lambda bar comma u bar this is the weighted sum.
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Weighted sum of objective g naught x bar and the constraints g j x bar or g i x bar g j

tilde x bar. And now we can define that so this is a Lagrangian. Now we can define the

Lagrange dual function.

What is the Lagrange the Lagrange? Dual function is g d of lambda bar nu bar all right.

Now remember now this is a function of the Lagrange multipliers that you can observe,

this is a function of the function of the Lagrange multipliers.

This is the minimum over x bar of the Lagrangian L of x bar lambda bar. This dual the

Lagrange what we call the Lagrangian dual is you take the Lagrangian alright for a given

lambda bar nu bar the Lagrange multipliers. And take the minimum over x bar alright

that is the Lagrangian function.
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And this is basically you take write try to write it explicitly, the minimum over x bar g

naught x bar plus summation i equals one to m lambda i g i x bar plus summation j equal

to or i am sorry i equal to 1 to L, in fact i equal to 1 to l, equal to 1 to m nu j g j tilde into

x bar and you take the minimum over plus, this is the Lagrange dual function ok.

So, gd lambda bar nu bar equals the; this is the Lagrange dual function corresponding to

the positively non convex remember all right, it is important again, I am repeating this

again  it  is  important  to  remember  that  we  have  started  with  the  standard  form

optimization problem which is not necessarily convex.

And  this  Lagrangian  dual  function  as  a  very  interesting  property,  the  Lagrange  the

Lagrange dual function can be shown to be concave in nature, irrespective of the original

optimization problem which need not be convex. So, this Lagrange the Lagrange dual

function this can be shown to be concave in nature. That this is your property this is an

important property this g d the dual function.
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And this is very easy to see this can be seen as follows for instance; if you look at the

Lagrangian function let us go back, take a look at the Lagrangian function x bar comma

lambda bar comma nu bar. This is equal to g naught x bar plus summation i equal to 1 to

l lambda i g i x bar plus summation j equal to 1 to m lambda j tilde, gj tilde x bar into nu

j equal to 1 to m ok, and now if you observe this function now, if you closely observe

this function.

You can observe that even though this is a complicated function of x bar, this remember

this is a linear combination of g naught x bar the g i x bar and the gj tilde x bar. And what

are these Lagrange multipliers lambda and nu j Lagrange multipliers lambda i is and the

nu j i are nothing but the weights all right. And therefore, it is affine in the Lagrange

multipliers and that is important to remember.

If you forget if you keep x bar constant now here if you keep x bar constant ok, for a

moment keep x bar equal to constant. Now you observe that if you look at the lambda i's

and nu j’s these are nothing but the weights ok.

So, lambda I. Coma nu j equals the weights in this linear combination ok. And therefore,

this is affine this Lagrangian if you look at this is affine alight. Affine in the sense that it

is  some  constant  plus  some  vector  transpose  times  lambda  bar  plus  some  vector

transpose times nu bar ok. So, this is affine in lambda bar nu bar because remember we



are keeping x bar constant for each x bar, for a given x bar for a given x bar this is affine

in lambda bar nu bar ok, that is what you have to say.
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So, for remember affine lambda bar nu bar for a given x bar which means it is concave

remember any affine function. Let us affine in the sense that this is a hyper plane. This is

a concave function,  this  is affine lambda bar nu bar and therefore,  this  is  a concave

function, this implies this is a concave function for each x bar this is a concave function

in lambda bar nu bar.

And therefore, now when you take the minimum remember what is the dual doing this is

taking the minimum. So, implies when you take the minimum over x bar. So, this is

concave for in lambda bar nu bar for each x bar, when you take the minimum over the x

bar what you get is the Lagrange dual function g d lambda bar nu bar, which is naturally

concave and that can be seen simply as follows.
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You take 2 concave functions and now you take the minimum the minimum and you take

the minimum. So, these are the concave functions. And now if you look at the minimum

of this the minimum is concave; so, the Lagrangian is the Lagrangian function is concave

it is in fact, affine in each lambda bar nu bar which is basically concave. So, the moment

you take the minimum of this over x bar it is going to be a concave function which

means the Lagrangian dual function g d is a concave function.

So, that is an important point and again I am belaboring the point. So, g d is concave, but

that is the Lagrangian (Refer Time: 17:22) and this is very important and again I am

repeating this over and over.

So, that you do not forgetted that is this is not and this holds true even when the original

problem is not necessarily convex and that is a big advantage, because you can see we

are going to see that we are going to convert a non convex. Because one can convert a

standard  non  a  possibly  non  convex  optimization  problem  into  a  concave,  or  an

equivalent convex remember concave optimization is the same as convex.

Because if you are maximizing a concave function that can we could take the negative of

the objective function you can write it as minimizing a convex objective. So, concave

and convex optimization in that sense are equivalent.



So, one can convert so the power of the duality framework is one is that one can convert

a possibly non convex original problem into a standard form concave or for that matter

convex optimization problem. And then one can use all the tools and techniques all right

associated  with  the  framework  of  convex  optimization.  And  this  has  this  is  a  very

powerful framework or this is a very powerful result, which has a widespread application

and simplifies several convex optimization problems. 

So in fact, can we used to simplify also obtain simplified forms of several possibly non

convex optimization problems, as we are going to see subsequently.

Thank you very much.


