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Hello welcome to another module in this massive open online course. So, we are looking

at  convex  optimization  and  its  application  for  machine  learning  alright  and  let  us

continue our discussion.

(Refer Slide Time: 00:23)

So, what we want to look at is we are looking at applications of convex optimization or

machine learning. And, well in this and in particular we are looking at classification or

building the optimal classifier and we have seen that this can be done as follows.



(Refer Slide Time: 00:55)

If you have a set of points test data set two sets of points corresponding to hypothesis 0

and  hypothesis  1.  So,  this  is  hypothesis  0  this  is  hypothesis  1  this  is  absence  of

hypothesis 0 is absence of primary user hypothesis 1 is presence of primary user.

And this is the hyperplane that is separating them, this is the hyperplane for separation.

And  since  this  is  linear  alright  you  can  also  call  this  linear  separation  or  linear

classification you can also call this as a linear classifier.
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And we said for this to be true if this is your hyperplane a bar transpose x bar plus b

equals 0 all the points corresponding to H 0 must satisfy a bar transpose x bar plus b

greater than 0. And points corresponding to H 1 a bar transpose x bar plus b less than 0

alright and the way we build this is we have this x bar i is M plus N points.
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So, we want to design this find the hyperplane such that a bar transpose x bar i plus b

greater than 0 for i equals 1 up to M and a bar transpose x bar i plus b is less than 0 for i

plus 1 or i equals M plus 1 for that matter i equals M plus 1 up to M plus N and you can

say these are our constraints. So, we have constraints for our problem constraints for our

problem of the to design the optimal classifier alright. That can separate these two sets of

points in the training data set or the test data set, now the problem is the first point is now

these are the constraints.

Now, what is so we have to find the some optimal hyperplane implies we have to find a

bar comma b to find the hyperplane. Now what is the optimization objective here the

constraints find: what is the optimization? What is optimization objective and you will

see that we do not have an optimization objective alright. Now, how do you formulate

the optimization problem in this context and you will realize something interesting is that

given this optimization paradigm or given this constraint we do not need an optimization

objective. 



There  is  any  hyperplane  or  any  combination  of  a  bar  and  b  which  satisfies  these

constraints that is for all points x bar i i equal 1 2 M a bar transpose x bar i plus b greater

than 0 and i equal to M plus 1 2 M plus N a bar transpose x bar i plus b less than 0. Any a

bar and b satisfying this set of constraints is fine with us which means we can formulate

a trivial, we can formulate an optimization problem with a trivial optimization objective

and that is as follows.

(Refer Slide Time: 05:01)

So, I can simply set the optimization objective to 1 alright any constant does not matter

minimize 1 such that a bar transpose x bar x i plus b greater than 0 i equals 1 2 up to M.

And a transpose x bar i plus b is less than 0 i equal to 1 or i equal to M plus 1 up to. So,

this optimization objective is a trivial optimization objective, the objective is constant

which means it cannot be minimized any further alright the objective is constant at 1. So,

what will this return this will return any feasible point, any feasible point in the sense any

a bar and b which satisfy the set of constraints alright which are able to separate these

two sets of points.

And in fact, that is what we are looking for and such a problem so this will result so this

will  yield  a  feasible  a  bar  and b  and  this  type  of  optimization  problem is  a  trivial

objective is termed as the feasibility problem. Because we are only interested in saying is

this problem feasible are they linearly separable, if they are linearly separable what is

any hyperplane that linearly separates these two sets of points.



So, this is a feasibility problem so this is a trivial objective. So, this is also termed as the

this is also termed as the feasibility problem implies returns any a bar comma b which

satisfies returns any a bar comma b which satisfies the constraints above. So, we are only

interested in finding a feasible point so this is basically a bar and b.
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So, we are asking the question is this problem feasible does there exist any point which

satisfies  the  constraints.  If  there  is  exist  any point  which  satisfies  the  constraint  the

problem is feasible otherwise the problem is infeasible alright.

If there do not exist a bar and a bar comma b satisfying constraints implies problem is,

the problem is infeasible. So, this is simply feasibility problem we are trying to check if

the problem is feasible and that returns the a bar and b which characterize the hyperplane

and that can be used for linear separation alright. Once you have the a bar and b you have

a new point x bar plug it into this a bar transpose x bar plus b, if it is greater than 0

implies hypothesis H 0 is less than 0 implies hypothesis H 1 which means primary user is

present.

Now, we still have a problem what is the problem if you look at this carefully you will

observe that these constraints are strict inequalities. So, these are strict inequalities and

you cannot have these strict inequalities in a convex optimization problem.



Because you have to  include the boundaries  cannot  have in  a cannot  have the strict

inequalities in the convex optimization problem alright, this is not a convex out where

you have the strict inequality alright. You cannot have it is the optimization resulting

optimization problem is non convex which means the inequalities cannot restrict alright;

not  a  problem  we  can  modify  the  strict  inequalities  we  can  simply  modify  the

optimization problem as follows.
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So, our modified optimization problem is the followings we have the same objective

trivial objective minimize 1 subject to a bar transpose x bar i plus b greater than or equal

to 0. Now from strict inequality I have simply made it greater than or equal to and a bar

transpose x bar i plus b less than or equal to 0 i equal to M plus 1 up to M plus N very

easy alright.

Now, you do not have strict inequalities anymore these are half spaces a bar transpose x

bar i plus b greater than equal to 0 each constraint represents a half space alright. So,

these are a fine and therefore, the constraints, so these are convex functions alright each

function is of the constraints is a convex function the objective is constant in fact; this is

trivially convex.

So, constraints are convex and this is a convex optimization process everything is fine

now everything seems fine, but there is a problem I am going to point it out. This is a

convex optimization  problem objective  is  convex constraints  are  convex so this  is  a



convex optimization problem where then is the problem in this. The problem rise in the

fact that the moment you specify this and remember it is a feasibility problem we are

simply interested in finding a feasible a bar and b if you observe closely you will see that

you have this greater than equal to 0 less than equal to 0.

If you set a bar equal to 0 b equal to 0 correct that trivially satisfies this problem a bar

transpose x bar i plus b equal to 0 a bar transpose x bar i plus b equal to 0 for i equal to in

fact, 1 up to M plus N. So, this trivial solution so now the problem is this feasibility

problem will always have the trivial solution. So, this would simply yield a bar equal to 0

b equal to 0 alright even if the points are not separable it will simply yield a bar equal to

0 b equal to 0 alright. So, you are stuck now with the series of trivial previously you had

a non convex optimization problem the moment you are relaxed the strict inequalities

make them inequalities already you are stuck with the trivial solution a bar equal to 0 b

equal to 0 and that is precisely the problem alright.

So, you will have to work out another approach which does not yield the trivial solution,

but yields is  actually  a hyperplane that  separates and a convex optimization problem

alright.  We want a convex optimization problem that yields hyperplane that separates

these two subsets of points and that is what we want to do next. And to do that we will

now further modify this optimization problem as follows what we are going to do, so

what we want to do is.
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Now, we have these two sets of points hypothesis H 1 and hypothesis H 0 and hypothesis

H 1. Now, we will modify this problem to design not one, but to design two hyperplanes

and that is the novel solution. So, we want to modify it to design not one, but separate

them by 2 parallel hyperplanes. In fact, what you are doing is you are fitting a slab if you

look at this what you are doing is you are fitting a slab not just a hyperplane.

But  of  course,  this  is  a  continuous  slab  you  are  fitting  a  slab  this  hyperplane  is

characterized by let us say a bar transpose x bar plus remember they are parallel. So, a is

going to be same only the constant is going to change, so a bar transpose x bar plus b

equal to minus 1. And this hyperplane is characterized by a bar transpose x bar plus b

equal to 1 I am sorry this one is a bar transpose x bar plus b equal to 1 this other one is a

bar transpose x bar plus b equal to minus 1.

And therefore, all the points in hypothesis H 0 will satisfy a bar transpose x bar plus b

greater  than  or  equal  to  1  and all  these  points  in  hypothesis  H 1  will  satisfy  a  bar

transpose x bar plus b less than or equal to minus 1. This is for this is for i equal to 1 up

to M and this is for i equal to M plus 1 up to M plus N.

Now, we are fitting a slab between these two sets of points in the training data set now

how do we want to design that slab alright. So, now, we want to fit a slab ok, so now, we

want to fit a slab. Now further if you observe so now, that problem is solved so we want

we do not know so we avoided that problem the previous trivial solution by designing

two hyperplanes  not  a  single hyperplane two hyperplanes.  So,  this  avoids  the trivial

solution by the way you cannot now simply have a bar b bar equal to 0 alright.

Because if a bar and b are equal to 0 then left hand side will be 0 it cannot be greater than

equal to 1 and less than equal to minus 1. So, this avoids the trivial solution this avoids

the trivial solution. Now further what else can we do we can do something interesting we

can not only fit a slab but we want to fit the thickest slab that is we want to maximize the

separation between the hyperplanes to make it robust.
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We want  to  find  the  thickest  slab  implies  the  thickest  slab  implies  maximize  the

separation maximize the separation between the hyperplanes only do you want to not just

fit any slab, but do you want to fit the thickest slab. So, want to maximize the separation

between the two hyperplanes how do we do that.

Now, we know that and we must have seen this in one of the problems before that if we

have to parallel  hyperplanes a bar transpose x bar equal to b 1 a bar transpose x bar

equals  b  2.  The distance  between these  two hyperplanes  if  you look at  the  distance

between these two hyperplanes this is equal to b 1 minus b 2 magnitude b 1 minus b 2 by

norm of a.

In the two norm of  a this  is  the distance between the two hyperplanes  therefore,  to

maximize the slab maximize the separation implies we have to maximize the distance

between the hyperplanes.
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So,  maximize  the  separation  implies  maximize  the  distance  between  the  two

hyperplanes. Now, what are the two hyperplanes remember the two hyperplanes are a bar

transpose x bar plus b equals 1 implies a bar transpose x bar equals 1 minus b. This is the

H 0 hyper hyperplane and a bar transpose x bar plus b equals minus 1 implies a bar

transpose x bar equals minus b minus 1 this is the H 1 hyperplane.

And the distance between them distance between hyperplanes this is simply magnitude 1

minus b minus minus b minus 1 divided by norm a bar this is the 2 norm of a bar which

is equal to now you can see 2 divided by the 2 norm of a bar this is the distance between

the hyperplanes. So, we have to maximize this separation implies this is our objective

function or this is basically our cost function.
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We have to maximize is to maximize the distance of separation between hyperplanes we

have to maximize the distance between the hyperplanes which is nothing, but 2 divided

by norm a bar.

Now maximize 2 is a constant norm a bar is positive maximize 2 divided by norm a bar

implies you can equivalently minimize norm a bar the 2 norm all these are 2 norms.

Because, maximizing 1 over norm is 2 over norm a bar is maximized when norm a bar is

minimized and that is now our optimization from.
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Therefore the optimization problem for maximum which you can also say is a robust

separation problem is minimize norm a bar such that sorry subject to a bar transpose x

bar i plus b greater than or equal to 1, for i equals 1 2 up to M. And a bar transpose x bar

i plus b less than or equal to minus 1 for i equal to M plus 1 up to M plus N.

And now if you see the norm this is convex norm is convex these are half spaces, these

are convex implies optimization problem equals convex. And more importantly there is

no trivial solution for this a bar equal to 0 b equal to 0 does not satisfy this alright. So,

the trivial solution has been avoided, we have a convex optimization problem avoided to

the  trivial  solution  and we are  finding the  hyperplanes  such that  you are  fitting  the

thickest possible slab or you have you have the set of hyperplanes with the maximum

possible separation between them separating these two sets of points alright.

So, there is the probability the error the probability of classification error therefore, is

going to be because remember as the separation becomes smaller and smaller there is a

high chance that because of noise you might have point from one set crossing over into

another set alright, because of noise you might have the point being misclassified. So, the

moment you are maximizing the separation between two hyperplanes the probability of

error also becomes minimum alright.

So, when you maximize the separation this implies the probability of classification error

is automatically minimized, the probability of classification error is minimized. So, this

is the linear classifier and linear classification into two sets this is termed binary.
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This is termed binary linear classifier and is also termed as a linear SVM where SVM

stands for support; this is one of the cutting edge in this is cutting edge in classification

linear support not supporting; I am sorry support vector linear support vector machine

linear SVM or linear support vector machine ok. So this is in fact, the most you can say

one not very latest, but this is definitely the cutting edge or one of the a very popular

alright. And we do a very popular and very efficient mechanism or a very efficient tool

for linear separation. In fact, it can be extended also fairly easily to non-linear separation

alright.

But in this current from it is simply a linear SVM that is a linear support vector machine

which is employed for which can be employed as a binary release in linear classifier to

classify two sets of points. We have seen a simple example in a cognitive radio scenario

you have once you sense the spectrum,  you have a measurement  you would like  to

classify if it belongs if it  belong a if it corresponds to either hypothesis 0, that is the

primary user is absent or hypothesis 1 primary user are present alright.

So,  all  such binary  classification  problems so or  several  such binary  classification  a

broad class of binary such classification problems can be handled by the linear SVM.

And in  fact,  because  this  is  a  convex  optimization  problem  it  can  be  solved  fairly

efficiently to come up with a linear classifier alright. So, we will stop here and continue

in the subsequent modules.



Thank you very much.


