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Example Problem: Orthogonal Matching Pursuit (OMP) algorithm

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at  schemes or techniques  compare  compresses  using,  and we have seen that

orthogonal matching pursuit for compressive sensing alright. Or 2 basically for sparse

signal recovery, that is to estimate a sparse signal x bar all right. So, we have seen this

algorithm in the previous  module;  let  us now look at  an example  to understand this

better.
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So, what we want to look at is the orthogonal matching pursuit. We have already seen the

orthogonal  matching  pursuit.  So  now, what  we want  to  see  is  an  example  a  simple

example of paper and pen kind of example for the orthogonal matching pursuit. And let

us consider the following example we have y bar equals phi x bar we have to estimate

the vector x bar.

So, let us consider the example that is given as follows. The vector y is 0 2 3 and 5 and

the matrix phi is the following this is 1 0 1, 0 0 1, this is 0 triple 1 0 0 1. This is the third



row 1 0 0 1 1 0 and the 4th row is 0 1 0 0 1 1 times the vector x bar which is basically x

1, x 2, x 3, x 4, x 5.

So, this is your y bar, this is your dictionary of sensing matrix phi this is your matrix x

bar, and so, the various parameters of this are as follows. This y is a 4 cross on vector, the

matrix phi is 4 cross 6 and x bar is 6 cross 1.
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And therefore, in this problem we have M equals 4 which is basically the number of

equations. And N equals 6 which is the number of unknowns. And we can see M less

than  N,  which  implies  number  of  equations  less  than  number  of  unknowns.  And

therefore, to estimate x bar or basically to recover x bar alright, where is x bar.

Remember you cannot use conventional linear algebra, will basically because in linear

algebra you need at least number of equations at least or number of equations equal to

the number of unknowns or the number of equations at least  equal to the number of

unknowns to uniquely determine the unknown vector x bar. And therefore,  one as to

enforce some other condition on x bar to uniquely recover it and the condition that we

have seen so far; that is to enforce sparsity.

That is, to determine a sparse vector x bar that satisfies this system of equations alright.

So, or that fits this  model.  So, we assume that x bar is sparse, and then we want to



estimate this sparse vector. And this is basically what is termed as sparse signal recovery.

The system does sparse signal recovery.
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And  the  algorithm  we  have  seen  OMP for  sparse  signal  recovery  that  proceeds  as

follows.

First find the projection so, we can see these are the columns, now remember when you

talk this y bar, these are the columns for instance this is phi 1 tilde, this is phi 2 tilde and

so on and so forth, this is phi N tilde or in this case N equal to 6. So, this is pi 6  tilde. So,

what we will do is, we will find so, OMP remember the first iteration.

The first iteration, you find the projection of x bar on each column of the matrix phi

which is on each phi i tilde and choose the column which yield the largest projection, all

right. So, remember you have i 1 equals argmax j. In fact, one less than equal to j less

than equal to N magnitude phi i tilde transpose times x bar. And remember is and what

we can and this we can do as a following thing.

So, basically what we are doing is finding projection of fined projection of each or fine

projection of fine projection of x bar, find projection of x bar on each column of phi. This

can be done as follows, what we are going to do or a fine projection of y bar, I am sorry

fine projection  of  y  bar  on each column of  phi.  And what  way this  can be done as

follows.
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So, what we are going to do is, we are simply going to perform phi transpose y bar. What

that gives us is that gives us basically the inner product of each phi 1 tilde phi 1 tilde

transpose phi 2 tilde transpose phi N tilde transpose y bar.
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Which is basically nothing but if you look at this, this is basically phi 1 tilde transpose up

to phi N tilde transpose into y bar.

So, each of these entries corresponds to. So, each entry equals projection of y bar on

column of phi. Now the other thing that you must have observed is if you look at these



rows,  you  can  see  that  these  rows  are  random 0’s  and  1.  So,  these  are  noise  like

waveforms ok. So, that is other important thing. So, rows of phi a random 0 columns. So,

these are noiseless remember that is an important criteria remember, we cannot take time

domain or special domain measurements. But you have to take the projections of x bar

on random noise like waveform alright.

So, each measurement is basically each observation is a projection of y for y bar on this

noise like waveform.
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So now let us find phi transpose y bar phi transpose y bar remember, phi transpose is this

matrix, in which the rows become columns and the columns become rows. So, first row

will be 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1, and you take the projection of y bar.

So, that is 0 2 3 5 and if you compute this, if you evaluate this, you will get the vector 3 7

2 5 8 5. Remember, each of this entries is the projection for instance 3, this is equal to

phi 1 tilde transpose y bar 7 equals phi 2 tilde transpose y bar and so on. And if you see

the maximum occurs equals 5th entry or 5th component, which is equal to phi 5 tilde

transpose y bar. Therefore,  the maximum projection  of y bar, y bar has a maximum

projection along column phi, along column phi; that is, corresponds to phi tilde phi.
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Therefore, now we form the basis matrix using this column phi 5 tilde. Or in other words

what  we are  saying is  this  quantity  i  1;  that  is,  index of  the  column which has  the

maximum projection that is phi. 

So, this is phi tilde of i 1 which is basically phi tilde of 5, that is your basis matrix.
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Which is basically that is nothing but this you take the 5th column of the matrix phi. And

that will be 5th column of matrix, 5th column of matrix y that will be 0 0 1 1. So, this is



the 5th column of, and now you solve the least squares problem. Y bar minus A 1 x bar,

remember this is the first iteration.

So, you solve the least squares problem. And once you solve this least squares problem,

remember the solution to this is x hat 1 equals A 1 transpose A 1 inverse A 1 transpose y

bar. which is A 1 transpose, remember A 1 0 0 1 1. So, this is 0 0 1 1 transpose, this is

very simple, simply row vector transpose.
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The column vector 0 0 1 1 inverse of this times A 1 transpose 0 0 1 1 times 0 2 3 5, ok.

And this will be half because A 1 transpose A 1, this is row vector times of column vector

will be 2. So, inverse of that is half times 0 0 1 1 times 0 2 3 5. So, this will be half into 8

equal to 4.

So, this is basically your x hat  1, ok. So, that is basically your estimate of the sparse

vector in the first. Remember this x hat 1 corresponds to the index of the column that is

chosen in the first iteration that is column number 5. So, your sparse vector so, this entry

corresponds to the 5th column or the 5th entry of the vector x bar. Now what we will do

is, we find the residue after the first iteration ok. So now, find the residue so, this is the

estimate and now what we will do is, we will find the residue for the first iteration.
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And the residue is r 1 or rather r bar 1, y bar minus A 1 x hat 1; which is 0 3 5 minus A 1

is simply the column 0 0 into 4.

So, this will be basically 0 2 minus 1 comma 0 2 minus 1, this is the residue in first

itration, ok. There is a residue after the first iteration. And this is in fact, what we carry

over to the second iteration. Remember, subsequently find the projections of the columns

of phi on this residue choose the one that has the maximum repeat  the process least

square solution, alright find the residue repeat the process. Now let us go to the second

iteration.
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So, let us look at now second iteration. In second iteration, we find projection of r bar 1,

that is residue from first iteration on each column of phi. And therefore, again similarly

what  we  will  do  we  will  do?  Phi  transpose  r  bar  1;  which  will  basically  give  the

projection of the residue on each column of phi ok. So, this will be 1 0 1 0 0 1 0 1 1 1 0 0

0 1 1 0 0 0 1 1 1 0 0 1, on the residue, 0 2 minus 1 1.
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Now, you take this projection, you evaluate this you will see that this comes down to

minus  1  3 2  1 0  1.  And what  you observe  that  now the  maximum is  3,  maximum



corresponds to second column. This is basically phi 2 tilde transpose r bar 1. So, the

maximum entry corresponds to the projection of the residue r bar 1 on the second column

that is phi 2 tilde transpose r power. Therefore, you now you choose the second column.

You make the augmented matrix. So, the augmented matrix becomes, previously we have

phi 2 tilde now we are identify. 

Now remember you can also write it as phi 5 tilde comma phi 2 tilde it does not matter. It

does not as long as you are clear that this is the order and therefore, corresponding the

entries of x tilde will x hat will correspond to these 2 columns. So, basically your matrix

in fact, I should write it like this. These are simply the columns of the matrix ok. So, you

have matrix you are picking the columns phi 5 tilde phi 2 tilde phi 5 tilde.
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And these will be so, this is basically what it says is i 2, that is the index picked up in the

second iteration is basically 2, ok. And the columns corresponding columns are 0 1 0 1

and 0 0 1 1. And now you again solve the least squares problem. Now you have the

estimate x hat; which is basically you solve the least squares problem nor y bar minus A

2.

Second iteration x bar 2 whole square it is a least squares problem. Remember this is

your, you can call this as the augmented basis matrix.
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And once you solve this  least  squares problem what  you get  is,  x  hat  2  equals  A 2

transpose A 2 inverse A 2 transpose y bar; which is basically if you look at A 2 transpose,

that is 0 1 0 1 0 0 1 1 times 0 1 0 1 0 0 1 1, A 2 transpose A 2  into inverse into A 2

transpose. 
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Once again 0 1 0 1 0 0 1 1 into y bar; which is 0 2 3 5 which basically equals this is 2,

this is 1 1 2 inverse of this matrix times 0 1 0 1 0 0 1 1 times y bar 0 2 3 5, that will be

basically 7 8. And inverse of this 2 cross 2 matrix is very simple. You interchange the



diagonal elements which are the same. Negative of diagonal elements, and you divide by

the determinant 1 by 4 minus 1 which is 3 times 7 8. So, this is 1 by 3 times 16 minus 7

is 9. I am sorry, 14 minus 8 is 6 16 minus 7 is 9, and this will given now give us 2 3 very

simple.

And this is basically this is nothing but your x hat 2. Estimate of x hat 2 estimate in the

second iteration.
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This is estimate in the second iteration. And now of course, we again need to find the

residue. That is r bar 2 equals y bar minus A 2 x hat 2.
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This will be 0 2 3 5 minus A 2; which is 0 1 0 1 0 0 1 1 2 3. And you can calculate this,

and what you will see is this residue is exactly 0. Residue equal to 0, this is your r bar 2 r

bar 2. So, the residue equals 0 which basically means that you are exactly able to exactly

approximate y bar in the second iteration, which means you are using the basis matrix in

the second iteration. That is comprising which comprise of the columns phi 2 tilde and

phi 5 tilde.

Therefore, your x hat 2 or the second iteration and what we have is y bar equals A 2, it is

basically as 2 columns, phi 2 tilde phi 5 tilde into x 2.
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So, this is able exactly approximates y bar. And therefore, residue 0 no further iterations

are needed. So, which means if you look at x hat of 2; which is equal to 2 comma 3, 2

corresponds  to  remember,  each  correspond  2  corresponds  to  phi  tilde  2;  which  is

basically second column of phi. And 3 corresponds to phi tilde 5 equals 5th column of

the matrix phi.
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And therefore,  now you can reconstruct  the sparse vector  x bar as follows, only the

second entry will be 2, and 5th entry will be 3 and the rest of the entries are 6.



So, this is second entry corresponding to phi 2 tilde, this is 5th entry corresponding to phi

5 tilde, and rest of the entries, rest of the entries are 0. Rest of the entries are 0, and

therefore, this is your estimate of the sparse vector x bar. And of course, as we said this is

a simple example it is simply a paper and pen example something that you can do on the

back of an envelope kind of a calculation.

But  of  course,  problems  in  practice  this  is  just  for  the  purpose  of  illustration,  with

problems in practice are frequently more complex, and they will be quite involved for

instance the size of the dictionary matrix 5 can be of the size, 500 cross let us say 10,000.

Remember,  the  characteristic  of  5  it  will  always  have  many  much fewer  rows  than

columns,  because  the  columns  represent  the  unknowns,  the  rows  represent  the

observations all right.

But you can use this OMP algorithms scale it up and use it for similar scenarios. And as I

have  already  said  OMP the  interesting  thing  about  OMP is  that  it  is  a  very  simple

algorithm, all you are doing at each stage is finding the projection of y bar.

And it is finding the position of y bar or the residue on each column of phi; choosing the

one that has a maximum projection all right. Computing the least squares estimate that

gives you the estimate x hat corresponding to the sparse vector in that iteration, remove

the current estimate the best approximation to y bar all right. Form the residue and then

continue in the subsequent iterations right.

So,  this  is  OMP  algorithm  this  example  clearly  illustrates  the  process  hopefully  it

clarifies. Some of your doubts or, some of how do I put it points which are points which

earlier lacking clarity, because the algorithm was theoretical in nature. So, this algorithm

sort of explicitly illustrates the OMP the working of OMP through an exam, all right. So,

let us stop here, and continue in the subsequent modules.

Thank you very much.


