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Practical Application: Orthogonal Matching Pursuit (OMP) algorithm for

Compressive Sensing

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking  at  compressive  sensing  and  we  are  seen  that  the  cost  function  for  the

compressive sensing problem that is minimizing the l 0 norm is highly non convex and

therefore, we have to invent or come up with intelligent techniques to solve this thing

and in this module, we are going to look at one such technique which is termed as the

orthogonal matching pursuit ok.
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So, we want to start looking at one of the seams schemes for solving for sparse signal

recovery, this is known as orthogonal matching pursuit what happens? And there is also

abbreviated as OMP, I remember the genesis of problem, this problem is something like

this, we want to enforce the sparsity, that is we want to minimize the number of non 0

entries given by the l 0 norm subject to the constraint y bar equals phi x bar, this is non

convex. So, we want to come up with a scheme to solve this and that particular scheme is

OMP orthogonal matching pursuit. 



What happens in  orthogonal  matching pursuit?  You write  this  matrix  phi as a set  of

columns it is corresponding columns ok. So, you have phi 1 tilde, phi 2 tilde. Remember

each is a column ok. So, the set of columns are since, we call is the rows as phi 1 bar, I

am calling the columns as phi 1 tilde, phi 2 tilde since, this is a N m cross N matrix there

are N columns ok. So, this is phi N tilde times x 1 x 2 up to x N. 
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And so these are N columns, N columns of the matrix phi, now the orthogonal matching

pursuit  remember  the  name itself  implies  matching  alright.  So,  you  are  looking  for

something that matches what is the thing that matches? You are looking for the column

that  closely  matches  the  vector  x  bar,  which  means  basically  you  have  to  find  the

projection of x bar on each of these columns of you have to find the projection of y bar

on each of these columns of the matrix phi and choose the one that has the maximum.

So, you are basically  trying to find, which of these columns is probably there in the

linear combination alright and therefore, you try to find the one which closely matches y

bar which means basically, the column which has the largest projection on y bar or the

column which basically, yields the largest projection of y bar, so the way to do that is.

So, we find the column of phi? Find the column phi? That will has largest correlation or

basically projection with y bar. So, the way to do that is we have i 1 equals at the first

stage, what we do at the first stage? Is basically we choose i 1 the index, one amongst all

the j columns.
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Let me write it clearly as the 1 that maximizes the as a column j at this where is, you

look at all  the columns phi tilde j take the projection phi tilde j transpose y bar and

choose the one that  has  the maximum projection.  So, choose the 1 right  choose the

column j that has the maximum projection ok. 

And now, what we do? Is we compute, we start building the basis matrix that is A 1,

which basically comprises of this first column, phi tilde of i 1 ok. So, this is at this stage,

this is a single column matrix ok. So, this is A 1. So, we think of this as the basis matrix,

this is by the way the first iteration of the algorithm and now what we do? Is given, this

basis matrix we find try to find the best estimate of the vector x bar? So, we minimize.

So, it is like we are finding this basis alright, this is the basis for the linear combination A

1 and now we are trying to find minimize the least squares norm, such that you find the

best vector x bar 1, in the first iteration that minimizes, this error this error corresponding

to y bar. 

And therefore,  the estimate x hat  1,  corresponding to  our basis  A 1 is  given as A 1

transpose A 1 inverse A 1 transpose y bar, this is basically the first iteration ok. So, what

we are doing is you are trying to estimate the basis ok. That is estimate the columns of

phi,  which are present  in  the linear  combination  to  give rise  to  remember  only  few

elements of x bar or non 0, which means only few a few columns of phi are present in

the linear combination. So, which are those columns? That is what we are trying to find



by this orthogonal matching pursuit. So, we take the projection of each column one y bar,

finding the one that has a maximum project,  choosing that column as the basis, then

finding the best type for optimization to the y bar based on that basis that is what we are

doing here by solving this least squares problem. 

Now, what we find is for find the residue, the residue that is left after getting this best

possible approximation.

(Refer Slide Time: 08:00)

So, the residue. So, this is basically Estimate of x bar in remember, but first iteration in

terms of the basis A 1 and now the residue after the first  iteration that  is after  your

approximation, that is remember y bar minus the basis times x hat of 1, that is basically

you have estimated x hat of 1, whatever is remaining that is y bar minus the basis times x

hat of 1.
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 This is your residue after the this is your residue after the first iteration ok. So, this is the

first iteration in the orthogonal matching pursuit. 

What do we do in the second iteration? Now in the second iteration now, we start. So,

this completes the first iteration now, let us do the second iteration ok, I hope this is

clear. In the second iteration, we do something very simple; we take the projection of this

on the residue. So we find the column, which has the maximum projection on the residue

after the first iteration. 

So, what we are doing here and this is the key step, find column phi tilde j that has the

largest  projection  on residue r  1,  after  the after  the first  iteration?  So, after  the first

iteration  you  are  find  we  have  left  with  the  residue  r  1  ok,  this  still  has  to  be

approximated.  So, you find the projection of each column of phi on this residue and

choose the column, which now has the maximum projection on this residue that is what

we are doing that is your index item. 
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Now, you augment your basis matrix  your basis matrix,  now become previously you

have remember, you have A 1 column matrix phi tilde i 1. Now you augment it with phi

tilde i 2 ok. So, you are augmenting the basis matrix A 2, you are augmenting this with

the column phi tilde i 2. Once again, you find the best estimate x bar via least squares,

now against again you find you have the basis matrix, you find the best estimate x of x

bar at the second iteration. The least squares estimate x hat 2, that will be given as A 2

transpose, we know the least squares procedure A 2 transpose A 2 inverse A 2 transpose 
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So, what is this x hat? This is the estimate of x best estimate of x hat 2 x bar best estimate

of x bar in the second iteration. 



Now, you find the residue r bar 2, which is y bar minus the basics matrix times x hat and

what is this? This is the residue after the second iteration; this is the residue after the

second iteration and then subsequently, now what you do in the third iteration? Take this

residue, find again the projection of each column of the matrix phi, choose the one that

maximizes, there has a maximum projection or let expand your basis or augment the

basis least squares estimate, alright find the residue and alright. 

So, keep repeating this process by projecting on their projecting at each iteration start by

projecting the residue from the previous iteration onto each column of phi, choose the

one that maximizes, choose the one that has a maximize maximum projection and then

repeat the process ok. 

So, repeat process by carrying over residue to the next stage so each stage the residue

carries  over to  the next  stage.  Now till  when to the you repeat  there can be several

criteria for instance, you might have a fixed number of iterations or typically you repeat

until this residue, the difference between the residue, that is a residue stops decreasing,

that  is  you  repeat  until  such  stage  that  your  residue  that  is  let  us  say, you have  K

iterations, that is this epsilon is some threshold.

(Refer Slide Time: 15:54)

 So, what we are saying is repeat until the difference between residues is smaller than

epsilon  residue  does  not  decrease  any  further  ok,  difference  between  residues  in

successive iterations is less than or equal to epsilon that is the residue does not decrease



and if the epsilon is the threshold, this is termed as the stopping criteria, every iterative

algorithm you have to choose a suitable stopping criteria ok.

So, this is termed as this is termed as the stopping criteria, there can be many stopping

criteria for instance, you can have a fixed number of iterations, residue until there is a

difference between the successive residues. You can iterate until the difference between

the  the  residues  stops  decreasing  any  further,  there  is  the  difference  between  the

successive residues is less than some predefined quantity epsilon or so on there can be

various different stopping criteria and now after the stopping criterion. Let us say, you

stop after K iterations x hat. So, you have after K iterations you have x hat K, which

means you basically obtained a sufficiently fairly good up estimate of approximation to y

bar and the residue is not decreasing any further after K iterations, let us say you have x

hat K. 

And naturally if you look at x hat K, that will have elements remember after K iterations

the augmented matrix is of size x K columns. So, you will have x hat 1, you will have the

estimated vector has K elements x hat 1, x hat 2 up to x hat k, but remember these

correspond to columns for instance, this corresponds to column phi tilde i 1, first one

corresponds  to  column,  first  one  corresponds  to  column  phi  tilde  i  1. Second  one

corresponds to column phi tilde i 2 and last one corresponds to column phi tilde i K and

so on. 
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And then therefore, how do you finally, estimate the vector x? Now x hat will simply be

a vector that mostly contains zeros, except corresponding to the location i 1, you have x

hat over, mostly zeros corresponding to the location i 2, you have x hat 2 ok. 

So, this is at location i 1, this is at location i 2 and the rest are zeros or rest zeros. Except

your locations, these are known as the sparse locations rest except i 1. So, we say except

i 1, i 2, i K rest are 0. So, this is a sparse vector basically. This is a sparse vector and. So,

finally, to conclude what we have is set x hat 1, x hat 2 up to x hat K at i 1, i 2 i K

respectively, in x bar or in x hat and rest of the entries of x hat are 0. Remember all this is

saying  is  basically,  through  these  various  iterations  you  have  estimated  the  basis

columns, which is which are phi tilde i 1 phi tilde i 2 at the second iteration so on, until

that the Kth iteration, you get phi tilde i K, which gives you the K largest projection on

the residue, at the Kth iteration, you can say that and therefore what you have is basically

you have this set of columns i phi tilde i 1 phi tilde i 2 phi tilde i K and therefore, the x

hat vector that you estimate naturally we have K entries ok, x hat 1, x hat 2 up to x hat K.

 So, each of these entries corresponds to that particular column alright and therefore, in

the original vector x bar, you have to set these entries x hat 1, x hat 2, x hat K add the

corresponding columns that is i 1, i 2, i K rest of the entries of x bar will be 0, that is

what gives you the sparse vector x bar alright that is the vector, that is estimated using

the orthogonal matching pursuit ok. 

So, it is a very simple algorithm, it is a very simple, it is a very intuitive that is at each

stage you are finding, the column of phi which has which has the largest projection on

the residue on which, the residue has the largest projection ok. So, that is what you are

finding degeneration and you are expanding the basis and at the same point, once you

have the basis, you are trying to find the best vector x bar that minimizes the residue and

you are computing that residue, taking it is projection in the next stage, next iteration

repeating  that  way  alright.  So, we  will  stop  here,  we  look  at  an  example  in  the

subsequent module, but we will stop here.

Thank you very much. 


