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Lecture - 56
Practical Application

Hello  welcome to  another  module  in  this  Massive  Open Online  Course.  So,  we are

looking  at  compressive  sensing  all  right  where  you try  it  to  compress  not  after  the

sensing process all right. So, you try to compress during the sensing process itself by

making much fewer number of measurements in comparison to the dimension of the

signal. And then later try to reconstruct the signal from the very few measurements may

all right.

(Refer Slide Time: 00:41)

So,  let  us  continue  our  discussion  on compressive  sensing.  Let  us  see  what  are  the

necessary conditions for this. So, you are looking at compressive sensing and what we

have  seen  is  1  thing  that  has  to  be  done  we  are  doing  is  essentially  you  have  a

measurement vector y of equals phi times x bar. And this is you are sensing matrix. And

you have M measurements y 1 these are your M measurements you have your matrix

phi. And I am going to draw this vector much larger than y bar purposefully because you

are making much fewer measurements than the length of the signal x.



So, this is your measurement vector. And this is your signal and this is your sensing

matrix and remember this is an M cross N matrix. And what we have is at M is less than

or equal to and that is we make significantly fewer measurements or let us say M is

significantly  lower  than  l  all  right.  Now  if  you  view  this  as  a  system  of  equation

equations then we have M as a number of equations N equals number of unknowns or

number of equations is less significantly lower than the number of unknowns.

So, simple linear algebra tells us, high school level linear algebra tells us that 1 cannot

reconstruct the vector x bar of length N which basically comprises of N unknowns from

simply M equation since the number of equations is much lower than the number of

unknowns.  So,  this  is  an underdetermined  system all  right  so,  our  systems.  So,  one

cannot uniquely determine x bar. Therefore this system, the sensing system has to satisfy

certain special properties In order to recover x bar from the observation.

(Refer Slide Time: 03:37)

Now what are those conditions or what is what the properties the system has to satisfy

that is what to look at. So, in order to recover or reconstruct; in order to recover x bar

from y bar, the sensing system must satisfy some conditions. What are those conditions

for instance. Let us look at the first condition. The first condition states that this must

satisfy some kind the first condition states that measurements are not simply in the time

or space. These are not simply in time or space. These are not simply in time or space

rather.
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 They have to employ noise like measurements have to employ noise like or one can say

pseudo noise or noise like these have to employ pseudo noise or noise like waveform. Or

let us just say noise like waveforms measurements have to employ.

(Refer Slide Time: 05:35)

What is the meaning of that the meaning of that is if you look at this sensing matrix.



(Refer Slide Time: 05:55)

 If you look at remember we said we have the sensing matrix which is M cross N which

means there is M rows and M columns. If you look at each row which we are denoting

by phi 1 bar transpose phi 2 bar transpose phi M bar transpose. So, these are the rows.

So, each row of the sensing matrix each phi i bar transpose which is the ith row has to be

a random noise. This has to be a noise like wave form which means that it has to be

something very random, it has to look like a random.

(Refer Slide Time: 06:57)



Or pseudo random sequence for instance like some random sequence of, either can be a

random sequence a random sequence of minus 1 comma 1. Or it has to be some random

noise like waveform such as Gaussian so on.

So, it has to be either a random noise like or a random sequence ones minus one so on.

So, each row that is we denote the ith row by phi i bar transpose of the sensing matrix

phi, this has to look like noise just to look purely like noise it cannot be one followed it

not.

So, the matrix phi cannot look like an identity matrix. 1 followed by 0 0 1 0. It cannot

look  like  an  identity  each  row  has  to  look  like  and  these  rows  have  to  look  like

independent  realization  of  the  noise  waveforms  alright.  And  thereby  when  you  are

making the measurement what you are doing is you are taking the projections of the

signal on this noise like waveform.
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So, when you are making the measurements, you have your y 1 y 2 y M which is equal to

y 1 bar transpose phi 2 bar transpose phi M bar transpose times x bar.
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So, this is equal to phi 1 bar transpose x bar phi 2 bar transpose x bar phi M bar transpose

x  bar.  So,  each  is  a  projection.  So,  each  measurement  if  you  look  at  this;  each

measurement  i  which  is  phi  i  bar  transpose  x bar  the  measurement  y  i  is  phi  i  bar

transpose x bar. This is the projection of x bar. This is the projection of x bar on the

random noise like waveform phi i bar. This is the projection of x bar.

So, what you doing when you are taking these measurements which is each row of phi

the sensing matrix is a noise like waveform and when you take in the measurement what

your doing is nothing, but taking the projection of this x bar a linear combination of x bar

using this noise like waveform which is the row phi i bar. So, the ith measurement is phi

i bar transpose x bar all right. So, that is an important property of the sensing matrix.
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Now, let us talk about the say vector x bar. Now the vector x bar itself has to satisfy an

important property. And this I would say is the important property of most important

property of x bar the vector x bar. And I am going to introduce this terminology which

we are going to use very frequently x bar has to be sparse and this is a very important

property; x bar has to be sparse what is the meaning of this. Remember when we say

something is sparse when we say an area is sparsely populated which it means that there

are very few people in that all right. This is sparse implies that it is very few some it is

sparse  and  some  object  implies  there  is  very  few  numbers  of  that  sparse  object  in

particular if it is sparsely populated a country is sparsely populated implies that there are

very few people in there.

Now, x bar is sparse implies that very simply it implies that a large number of entries of

x bar are 0 only very few entries are non 0. So, this implies that basically what this

implies is that large number of entries. So, sparse implies large number of are 0 only very

few entries which are marking by these x’s.
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 For instance only very few entries are non 0 only very few entries are non 0. So, a large

number of entries of x bar are 0 very few entries. So, x bar is a sparse vector or so, x bar

is sparse or alternatively and this is typically what happens or x bar equals psi some

matrix psi times alpha bar.

(Refer Slide Time: 13:15)

 So, x bar is N cross 1. This alpha bar is N cross 1 and psi is an N cross N basis such that

alpha bar is a sparse vector that is alpha bar equal sparse implies alpha bar has very few,

alpha bar has very. So, either x bar is SPARSE. So, vector that you are trying to recover



or more importantly and this is what happens more frequently like an image x bar can be

expressed as a linear transformation of a sparse vector. For instance we take an image.

Image if you look at it  in the special  domain it  is not possible when you take it  for

instance the wavelet  transform it is an excellent example.  If you look at  the wavelet

coefficients of an image then they are sparse very few coefficients are non 0. 

(Refer Slide Time: 14:43)

So, therefore, I can have an image x bar which is psi times alpha bar. So, let us say this is

image these are the wavelet coefficient. And this is your wavelet transform matrix linear

transform. So, x bar is sparse or x bar can be expressed in terms of alpha bar which is

sparse and therefore, now if you substitute this the sensing model becomes y bar equals

phi x bar equals phi psi times x bar equals phi tilde times x bar.
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 I am sorry phi psi times alpha bar. And if you do note phi psi as y phi tilde the effective

sensing matrix this phi tilde now becomes your effective sensing matrix. And now alpha

bar is SPARSE. And you still have the same relation this is M cross 1 this is M cross N

and this is N cross 1 

Now, in this model it is as if you are trying to you are trying to sense the vector alpha bar

which is in the wavelet domain. Now once you get the wavelet coefficients naturally you

can  reconstruct  the  image  right  because  image  and  wavelet  they  have  a  1  to  1

correspondence. If you have an image you can represent in terms of wavelet transform

right. If you have the wavelet transpose the wavelet coefficients they can reconstruct the

image all right.

But  the  wavelet  coefficients  satisfy  a  very  important  property  which  is  that  this

coefficients  the  wavelet  vector  of  wavelet  coefficients  is  sparse.  And  that  is  very

amenable to compressive sensing and this is what is preferred frequently happens and the

model can be extended right.

So, your y is equal to phi times x bar you substitute for x bar psi times alpha bar. So, it

becomes phi psi into alpha bar and now you reconstruct alpha bar; from alpha bar which

is  sparse vector  sparse signal  recovery or  compressive sensing and then you get  the

image from the wavelet coefficients all right or x bar from alpha bar using x bar equal to

psi alpha bar.
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So, once you get alpha bar use x hat equals psi alpha hat to obtain estimate x hat from

alpha hat so, that is what you do. And now if you look at this phi tilde matrix this has to

contain noise like waveforms. So, phi tilde which is your effective sensing matrix has to

comprise  of  this  has  to  comprise  of  noise  like  waveforms  or  contains  noise  like

waveforms. Now how to reconstruct this alpha bar or x bar if x bar is sparse how to

reconstruct. Let us assume that x bar is sparse and phi contains noise like waveforms.

(Refer Slide Time: 18:13)



Now, the question that we want to ask is how to reconstruct x bar. To reconstruct x bar

what we have to do is we have to enforce the sparse it remember x bar is a sparse vector.

So,  we  have  2  enforce  sparsity  so,  how to  reconstruct  x  bar  the  answer  is  enforce

sparsity. What is a mean to say enforce sparsity implies, we have to somehow impose a

condition that x bar contains a large number of remember we said x bar is a sparse

vector. 

So, we have to enforce this sparse this sparsity which implies that we have to ensure that

the reconstructed vector x bar is such that a large number of elements are 0’s only some

elements are non 0. So, which implies we have to ensure that large number of elements

of x bar are 0; we have to ensure that large number of elements of x bar are 0 this is

what. In fact, ensure that large number of elements of x bar; large number of elements of

x bar are 0 all right. So, that x bar is sparse and this is precisely what is enforced by what

we call the l 0 norm. 

(Refer Slide Time: 20:05)

That is if you denote the l 0 norm of a vector this is l 0 norm like similar to l 1 l infinity

and l 2 norm; this is the l 0 norm this l 0 norm and l 0 norm this equals the number of

non 0 element of x bar. So, this is precisely what you want to minimize, the number of

non 0 elements of x bar which is l 0 norm.



(Refer Slide Time: 20:51)

For instance let us say you have the vector x bar equals 0 0 2 0 minus 1 0 0 0. Now, l 0

now look at this is a 8 elements, but only 2 non 0 elements. In which implies if you look

at l 0 norm of x bar that is simply 2 alright. So, very simple all you have to do is count

the  number  of  non 0 elements  of  x  bar  all  right.  Whatever  is  the  number  of  non 0

elements that is the l 0 nothing else to be done. So, it is very simple their concept of l 0

norm itself is very simple. So, this l 0 norm concept; this l 0 norm concept is very simple,

but there is a problem so in fact, the non 0 elements.
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We are not concerned with the values of the non 0 element we just have the number of

non 0 elements. We are not concerned with observed here unlike the other norms not at

all concerned with values of something that is strange.

For instance this could have been 2 comma 1 and in fact, if you have another x tilde

which is 0 0 3 0 5 0 0 0 non 0 elements are 3 comma 5 and if you look at l 0 norm of x

tilde that is also 2 alright. It is the interesting part is we are not at all concerned with

what are the values of these non 0 elements. We are only concerned with the number of

non 0 elements that is the most interesting about the l 0 norm and that is what. In fact,

makes it very complex this problem and therefore.

So,  the  optimization  problem  for  now  reconstruction  and  therefore,  at  this  is  very

interesting.

(Refer Slide Time: 23:17)

Therefore optimization problem for reconstruction of x bar is the same thing that we

talked about. We have the sensing model we want to minimize the l 0 norm. And now

subject to the constraint that y bar equals phi times x bar, what is y? Y bar is observation

vector that is what something that we have seen already seen y bar phi sensing matrix x

bar is a vector that we are trying to estimate x bar. 

So,  we  minimize.  So,  this  is  basically  enforces  this  is  what  we  mean  by enforcing

sparsity. This  is  enforcing  sparsity  because  we are  minimizing  the  l  0  norm that  is



minimizing the number of non 0 elements. So, this is the relevant optimization problem.

And why do we need this we need this because M number of equations, M is less than or

equal to N. Which we implies the number of equations is less than or equal to number of

unknowns and therefore, one has to exploit sparsity.

So,  reconstruction  is  only  possible  exploiting  because  we  said  if  you  treat  this

reconstruction only possible via reconstruction, only possible via exploiting sparsity. So,

what does this mean? Your enforcing sparsity which means you are trying to find here

finding the  sparsest  vector;  find the  Sparsest  vector  which satisfies  that  satisfies  the

observation  model.  So,  that  is  what  the  optimization  problem  is.  That  satisfies

observation model y bar equal to y bar equal to phi x bar. So, if you trying to find this

Sparsest vector. 

Now what  is,  now we  have  written  an  optimization  problem like  similar  to  several

optimization problems that we have seen before. We have an optimization problem you

might  think  that  you  can  solve  it  similar  to  fashion  that  we  have  done  before  an

optimization  objective  plus  Lagrange  multiplier.  The  problem  with  this  is  this

optimization  problem  not  only  is  the  objective  non  differentiable  this  optimization

problem is highly non convex.

(Refer Slide Time: 27:07)

If you look at the l 0 norm; norm x bar is 0 l 0 norm this is highly convex. This is highly

non convex implies very difficult to solve above optimization problem is very difficult to



solve over. Consider a simple technique what you can do is for instance let us say you

have M elements or M N equals size of x bar, what you can do is set only one non 0

element of x bar solve it already you will have one; you will have only one unknown, but

the non 0 unknown can be in any of the N positions.

So, we will have to solve N systems and then similarly you can have 2 non 0 elements

the 2 non 0 elements can you can be in any of the 2 locations. So, you have N c 2 such

combinations. So, you have to solve N c 2 system. So, so on and so, forth if you look at

this total number of total number of systems that have to be solved is N choose 1 plus N

choose 2 plus so on and this will be 2 to the power of N or 2 the approximately you do

not need to get it the exact number what you can see is this rises exponentially.

So, this is of the order 2 to the power or you can write order 2 to the power of N so, total

number of systems, which is highly complex for instance. If we have a signal vector x

bar of dimension 100 then you have to solve 2 to the power of something of the order of

2 to the power 100 which is  impossible  alright  that cannot  be solved by any known

computer either now or in a very far right. So, the point is that this problem although it is

very simple to state the optimization problem it is an extremely complicated optimization

formula.

(Refer Slide Time: 30:13)

Now, if you look at for instance the l 0 norm, what is the l 0 norm? If you look at for

instance l 0 norm equal to l 0 norm if you look at a 2 dimensional plane. This one point



has l 0 norm equal to 0 because that is the origin. Now, this axis other than origin. If you

look at this axis that has l 0 norm because on the axis you have only ones non 0 element.

So, this is rest all of the plane other than axis and origin this. So, if you look at l 0 norm

less than equal to 1 that comprises only of the axis. So, if you look at this object it is

highly non convex. So, if you look at the l 0 norm ball.

(Refer Slide Time: 31:17)

The l 0 norm ball this is the l this is literally the l 0 norm ball. Which is basically highly

this is highly non convex and that is the problem in solving this optimization problem all

right. So, we would like to make very few measurements agreed projections or noise like

waveforms agreed, the vector x bar is sparse or it is sparse in some appropriate domain x

bar equals psi times alpha bar, but the problem is that the eventually the problem that has

to be solved in force sparsity.

Which is basically minimizing the l 0 norm that has an exponential complexity it is an N

p hard problem. And which is therefore, practically impossible to solve for large signals

x bar that is signals of the size let us say even 20 samples 20 samples or 25 becomes very

difficult  exceedingly  difficult  and  if  with  100 samples  it  is  impossible  to  solve  and

therefore, 1 has to come up with other engineers techniques to solve this optimization

problem and that is basically at the heart of compressive sensing let us say. What are the

other techniques that can be used to solve this optimization problem which we are going

to look at in subsequent modules that forms the basis for compressive sensing and that is



what in fact; these techniques have revolutionized the field of compressive sensing all

right. So, let us stop here and continue in the subsequent modules.

Thank you very much.


