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Practical Application : Compressive Sensing

Hello. Welcome to another module in this massive open online course, in this module let

us start looking at another new in fact revolutionary and path breaking development or

technology and that  is  a Compressive Sensing alright;  which is  really  revolutionized

signal processing.
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So what we want to look at is an overview of compressive sensing or also known as

compressed sensing and it is relation to the optimization framework that we have looked

at so far.

So this is, it is a latest and very significant path breaking development or path breaking

technology  in  signal  processing  and  it  is  applications  are  everywhere  even  in

communication, biomedical signal processing so on in many domains. And to understand

compressive sensing let us start by considering a signal x bar which is unknown.
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X bar is an unknown signal and this has to be therefore either estimated; since this has to

be unknown either estimated or you can also say recovered or reconstructed there several

words for the same. If it is an image there we say the image has to be the unknown,

image has to be the original image has to be reconstructed ok. 

(Refer Slide Time: 02:30)

So, let us say this x bar is an n dimensional signal vector it is a signal vector which is x 1

x 2 up to x N this is an N dimensional signal vector and how do we estimate this N

dimensional signal vector naturally we have to make some measurements. So, we make



measurements for the signal vector this unknown signal vector x bar in order to estimate

the signal vector x bar. So, that basically we are sensing the signal vector ok, so that is

part of this compressive sensing.

So, we have to sense this in order to estimate. And therefore, what we have is we have

this y bar equals phi times x bar. So, we are measuring or we are this is your observation

vector or your sense. So, you are sensing this vector and these are your observations y

bar is your and this becomes your sensing matrix.

(Refer Slide Time: 04:14)

And this can be written as let us say we are making M observations so we have y 1 y 2 y

M this is equal to phi 1 bar transpose phi 2 bar transpose so on phi M bar transpose times

your let us write this dimensions suitably so that it is clear.
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So,  this  is  phi  1 bar  transpose;  the different  rows are phi  1  bar transpose phi  2 bar

transpose phi M bar transpose because this is M rows and this is the vector that is being

sensed.

So, this is your matrix phi, this is x bar this is the observation vector y bar, so M is the

number of observations; this quantity M equals number of observations. And x 1 x 2; and

now these phi 1 bar phi 2 bar or if you call them phi 1 bar transpose phi 2 bar transpose

phi M bar transpose these are the rows these are the rows of the sensing matrix.

And therefore now so what we order we doing we are making these M observations y 1 y

2 y M through this sensing matrix phi alright. So, each observation you can think of it as

a projection  of  this  vector  x  bar. So,  what  you are doing is  your forming phi  1 bar

transpose into x bar that is one observation phi 2 bar transpose x bar, so each of these

observation is a projection of this vector x bar on a row of this sensing matrix phi.
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So, if you look at this you have and you can clearly see this you have y i that is i-th

observation equals phi i bar transpose x bar. So, this is i-th observation; this is projection

of x bar  on row phi  i  bar or phi i  bar transpose.  So,  each measurement  is  basically

projection of the signal vector x bar on the made on a row of the matrix phi.

And now since there are M observations and N unknowns this matrix phi is an M cross N

matrix this is an M cross N matrix and naturally if you look at this we are trying to

estimate the signal vector x bar number of observations is y number of observations is

M. So, you can say M is the number of observations or measurements,  so M is the

number of and N equals N equals the number of unknowns. And therefore,  this  is  a

system  of  equations  with  M  observations  or  M  equations  M  is  the  number  of

observations measurements or M is the number of equations and N is the number of

unknowns.

And from linear algebra we know that in order to recover x which is vector of size N you

need at least N equations to uniquely determine x. So, M is the number of measurements

which is  the same as the number of equations  N is  the number of unknowns or the

variables from linear algebra; we know to uniquely determine x bar we need M greater

than or equal to N.
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This is what we need and conventionally in conventional framework we have M equal to

N ok. And how do we do that if you look at that that is we have these N observations y 1

y 2 up to y N which is simply the identity matrix. So, typically what you have is you are

simply sampling the signal that is you are simply for instance it is your time domain

signal you are simply sampling the signal. At each instant you are taking a sample or let

us say your image you are sensing each pixel via a sensor.

So, for a signal with N samples alright you are making N measurements this is typically

what we do we make we have a signal of length N we make N. So, for instance signals in

time domain we make N different at N different instance we sample the signal at these N

different instants N measurements and from those measurements we recover the signal.
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So, these are the samples, so you can say these are this is the signal and these are the

samples in time or space for instance for an image these can be in space. So, these are

sampling, so this is time or temporal or spatial sampling you can say you can say this is

this is temporal or spatial sampling this is temporal or spatial sampling.

And  we  are  making  one  sample  per  one  measurement  per  sample  or  signals  one

measurement of per sample or signal value. And therefore, to uniquely determine is we

said we uniquely determine the signal with N samples we need at least M greater than

equal to N we can choose M equal to N. Now however, consider the following thing let

us take a simple example consider a typical image for instance.
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Now, the image equals let us say it is  256 it is a small image it is a 256 so 256 pixel

image. And let  us say it  is a color image implies you have color image that is RGB

implies for each of these RGB components you need 1 byte for each pixel which means

1 pixel 3 into 8, that is your RGB 3 into 8 equals 24 bits 24 bits per pixel. This implies

the total number of bits per image the number of bits per image is 256 into 256 into 3

into 8 bits per pixel which is equal to if you look at this is up comes out to be roughly

1.58 Mb ok.
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So, if you look at each image we just look at the raw image the number of bits required

to store a raw image. Then you have about for a simple image that is 256 or 256 pixels of

course, images nowadays have much higher resolution.

But let us consider a simple example a 256 cause 256 resolution which means you have

and with color image that is you have 1 byte for each of the components RGB and so

three components and 1 byte for it. So, 3 into 8 there is 24 bits per pixel into 256 into

256 that is a 1.58 Mb ok. So that is however if you look at size of a typical image on

your phone or your computer the size of a typical image a typical image file would be

around 30 to 40 Kb or at most 50 Kb. So, size of typical image this is let us say 50 to 60

Kb only.

Now, where is the difference coming that is where is the reference so, from a 1.5 Mb

megabits you are coming to 50 to  60 Kb. So, what is happening to this huge size this

image of huge size; how is this possible; how is it that you are able to get an image store

an image at such a small size even though the raw image has so many bits. The obvious

answer to this  is  that  that  image instead of storing a raw image this  image is  being

significantly compressed in size in terms of the number of bits. So, typically for image so

how is this possible this is possible through this is possible through compression.

(Refer Slide Time: 16:35)

For example,  you have J PEG G I F these are various formats for these are various

formats for compression. So, what is this paradigm for signal processing or compression



and this can be represented as follows let us consider a simple example. Let us say you

have a image which is 1.5 megabits what we are doing is the following you are first

sensing this image. So, this is a large image which implies you require a large number of

sensors this is your number of observations also if you look at the earlier model this is

basically N so basically this is conventional ok.

So, which means the number of sensors required is N so image is of size N you have a

large number of sensors of size N this is your conventional sampling or sensing. That is

you are taking one sample you require one sensor per sample. However, interestingly or

rather strangely after sensing you are compressing that is you throw away throw away

significant amount of data. So, what you are doing is strangely you are using a camera;

for instance you have a camera alright in your phone or let us say separate standalone

camera.

Then you are sensing it at this huge resolution alright. For instance you are sensing it in

terms of the megapixels you have a camera which has resolution of several megapixels

you are sensing it. And ultimately the image the raw image that you capture over the raw

signal that you capture as a huge size we just captured using a large number of sensors

alright.

But, after the capture process you are throwing away a significant amount of data to

compress it which means basically you are using a large number of sensors that is your

original device is very expensive because of the large number of sensors. But at the same

time you are not able to leverage or you do not need this, because you are throwing away

a large amount of data, because the compression is coming after the sensing process that

is the important aspect. The compression here is coming well after the sensing process

that is the important thing to realize here.
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In this conventional paradigm you have compression well after the sensing compression

is coming well after the sensing process. This leads to a wastage this leads to a large

number of sensors wastage this leads to a large number of sensors significantly implies

the resulting system is expensive implies the resulting system is extremely expensive.
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Now instead consider now this is  instead  consider this  paradigm you have an image

consider this paradigm you have an image you perform M measurements much less than

N that is number of sensors M is much less than N this is term as compressive sensing.



So, you are not using number of sensors that is equal to the M is not equal to M; M is not

greater than. In fact, the number of sensors M is much less than much lower than the

number of samples or the size of the signal vector N.

So, basically while the sensing process itself you are compressing it is as if for a 1.5

megabit image you are making only 60 kilo bit of observations roughly alright. So you

are not sensing and compressing, but compressing while sensing itself.

Now, therefore, now since you are compressing while sensing later you have to recover

the signal  or  reconstruct  the signal.  So,  first  you are so instead  of sensing and then

compressing  you  are  compressing  while  sensing,  and  then  you  can  performs  signal

recovery signal recovery to extract the original signal. So, this is the idea so this is very

few measurements followed by signal recovery very few requires very few senses.
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So,  you  are  performing  compression  during  sensing  or  compression  together  with

sensing this is basically nothing, but the framework of or let me just write it in block

letters.  Emphasizes  this  is  basically  the  framework  of  this  is  the  framework  of

compressive sensing which results in a significant  saving in terms of cost significant

saving  in  terms  of  the  number  of  sensors,  because  you  are  making  very  few

measurements in comparison to the size of the signal.



Now naturally that implies also that since the number of observations is less than the

number of signal samples. Remember, this is similar to I remember we said the sensing

process  similar  to  having  solving  a  system of  linear  equations  M is  the  number  of

observations N is the number of signal samples.

So, we need M greater than equal to N now naturally if M is less than N one cannot

uniquely determine the signal vector x bar, because linear algebra results still remain the

same. So, therefore, one has to come up with some engineers techniques or some new

ideas  to  reconstruct  the original  signal  x bar from this  compressed or compressively

sensed signal from this compressively sensed signal alright y bar.

Now, what  are  those techniques  first  how do you sense  the signal  in  a  compressive

fashion and what are those engineers ideas that you use for reconstruction that forms the

basis of comparison. In fact, these this is where the path breaking ideas come in that is

how do you reconstruct this signal using a much fewer number of sensors or much fewer

number of observations in comparison to the total signal size.

And it is not possible to do it using; of course, if you look at the results in conventional

linear  algebra  it  is  not  possible  to  do  it  therefore  one  has  to  come  up  with  a  new

framework. And that is where the optimization aspect also comes in; which is what we

are going to look at in the subsequent module.

Thank you very much.


