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Design

Hello welcome to another module in this massive open online course, so we are looking

at MIMO beam forming; how to design the optimal transmit and receive Beamformers in

a multiple input multiple output wireless communication system. So let us continue our

discussion.
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So, what we want to look at is we want to look at MIMO beamforming and we have said

after combining with u bar Hermitian u bar is at  receive beamformer we have u bar

Hermitian H v bar times x plus u bar Hermitian noise this is the noise vector. Now, what

we have to do is this is your receive beamformer and u bar and v bar is a transmit beam

former  and  we  want  to  design  this  to  maxi  jointly  design  transmit  and  receive

beamformers to maximization are first what we will do is we will set H v bar.
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We will set this quantity equal to h bar and now you will observe something interesting

this becomes u bar Hermitian h bar into x plus u bar Hermitian times n bar. Now if you

see this h bar this effectively becomes a single input multiple output system by setting H

v bar equal to h bar this effectively becomes us a SIMO system or a multiple simply

multiple receiver antenna system.

For which we already know the optimal beamformer effectively becomes your multiple

RX antenna system and once it become an RX antenna system what you have is that this

is  equal  to.  Now, therefore,  now you know what  is  optimal  beam former  u bar, the

optimal beam former u bar for this multiple antenna system optimal RX beamformer is

the maximal ratio combiner; that is u bar equals h bar divided by norm h bar ok. And

therefore, we know this is the maximal ratio combiner, this is your optimal beamformer

maximum this is a maximal ratio combiner.
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And the output SNR of the maximal ratio combiner is given as norm h bar square P over

sigma square  remember  P is  the  transmit  power  sigma  is  the  noise  power.  So,  this

quantity is constant P over sigma square because, P is the transmit power sigma square is

the noise power implies that we have to maximize norm h bar square. So, to maximize

the SNR we have to maximize norm h bar square ok. So, in order to maximize SNR, so

that is optimisation problem maximize or let us say maximize output SNR we have to

maximize norm h bar square.

But h bar equals we have seen h bar equals h times v bar or capital H times v bar. So, h

bar equals H times v bar which basically implies substituting this we have to maximize

norm H times v bar square which is basically norm H times v bar square. And what is

norm H times v bar square H times v bar square is the vector Hermitian itself for a

complex vector which is basically v bar Hermitian H Hermitian H into v bar which is

equal to v bar Hermitian G into v bar.
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So, we have to maximize this quantity where what is G, G equals H Hermitian H G

equals H Hermitian H and we have to maximize. So, optimisation problem, so the net

optimisation  problem becomes  maximize  v  Hermitian  G  v  subject  to  the  constraint

remember the constraint is still there unit norm constraint that is the transit beam former

energy of the transmit beamformer or power of the transmit beam former norm v bar is

less than or equal to 1. So, this is the resulting problem for optimal beam forming alright

we have substituted H capital H bar equals H times v bar and from that you derive this in

terms of the optimal this optimisation problem for the optimal beam former. 

And a now to just to simplify it what I am going today is I am going to assume real

vectors I am going to place this Hermitian by transpose. So, I am going to say to simplify

consider real vectors. So, this becomes v bar transpose G v bar subject to the constraint

norm v bar less than one or norm v bar square less than equal to 1 both these constraints

are equal equivalent and observe that interestingly this is a non-convex problem.
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This is one of the few and very interesting non-convex ones because if you look at this v

bar transpose G v bar is a convex function correct. However, we are maximizing it we

are not minimising remember standard form convex optimisation problem we have a

convex objective, but your minimising it here a convex objective your maximizing. So,

the problem is a non-convex problem although the objective is  convex because your

maximizing it is it so non-convex.

In fact, if you minimise it you have to take the minimum and minimiser, but once you

take the minimum the convex objective becomes a concave objectives as and therefore, it

is  a  non-convex problem ok. And therefore,  is  because G is  a  positive  semi definite

matrix G equals a PSD matrix and v bar transpose G v bar equals convex however, what

your doing is your minimising a convex objective. Your performing minimization over a

convex objective function implies that this is non-convex and therefore, now what will

do is we will form the Lagrangian the same thing that we have done before.
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That is F of v bar coma lambda remember you have the objective v bar transpose G v bar

plus  lambda  times  1  minus  norm  v  bar  square  objective  plus  eigen  plus  Lagrange

multiplier times constraint. This is equal to v bar transpose G v bar plus lambda times 1

minus v bar transpose v bar now, differentiate it take its gradient with respect to v bar

this v bar transpose G v bar twice G v bar plus gradient of lambda with respect to v bar is

0 minus lambda derivative of v bar transpose v bar is twice v bar minus twice v bar or it

write minus twice lambda v bar this is equal to 0.
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Now, if you solve this the two is cancel and therefore this implies that G v bar equals

lambda times v bar and then you observe something very interesting what you observe is

the G v bar equals lambda v bar. And recall you have already seen this kind of equation

this equation before this is the nothing, but with the definition of the eigenvector of G

that is any vector v bar which satisfy this property that is G times v bar vector equal

simply a scaling factor lambda times v bar v bar is the eigenvector and lambda is the

eigenvalue.  So, that is the interesting property so what this shows is that the optimal

transmit vector v bar equals eigenvalue of G equals now you can write H Hermitian H

that was just for simplicity.

So, there is a eigenvector of H Hermitian H there is an eigenvector of H Hermitian H

right, but correct right. So, this has many eigenvalues now which eigenvalue now how to

find which eigenvalue or you can say how to find the Lagrange multiplier lambda ah. So,

we can say that this will be v transpose G v bar now G v bar equals lambda v bar so this

because v transpose lambda into V bar which is lambda times v transpose v bar which is

lambda times norm v bar square,  but norm v bar square equal to 1 so this becomes

lambda.
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So, this is lambda and you want to maximize this want to maximize v bar transpose G v

bar  implies  choose  the  maximum  lambda  or  choose  eigenvector  corresponding  to

maximum lambda eigenvalue of H Hermitian H. That is let us say we can denote this by



lambda max of G which is lambda max of H Hermitian H G is a H Hermitian H. And

that is something that is extremely interesting what you have what it says is the transmit

beamformer  H Hermitian  H corresponds to the max eigenvalue  corresponding to the

maximum eigenvector of H Hermitian H that is the transmit beamformer v bar unit norm

transmit beamformer v bar which maximizes the SNR at the receiver.
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So, choose v bar unit norm choose v bar equals unit norm eigenvector corresponding to

maximum eigenvalue of corresponding to the maximum eigenvalue of H Hermitian H

that is the interesting aspect. This is also termed this Eigen vector corresponding to the

largest eigenvalue this also termed as the principal eigenvector, transmit beam former v

Hermitian transmit beamformer v bar is the principal eigenvector corresponding to H

Hermitian H.
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Now whatever u bar the receive beam former remember u bar receive Beamformer we

still have to find that that is H v bar divided by norm H v bar. Now, this norm is simply

normalization so for the time being ignore this u tilde equals H v bar now look at this

now perform H H Hermitian u tilde equals H H Hermitian into H v bar, but v bar is

eigenvector of H Hermitian H correct.

So, this will become H now look at this H Hermitian H v bar is equal to lambda V bar so

this is lambda times H v bar, but H v bar is u tilde. So, what we have here is we have

shown something very interesting H H Hermitian u tilde equals lambda times u tilde

implies u tilde is the Eigen that is the receive beam former u tilde is the eigenvector of

the matrix H H Hermitian and that is something that is interesting u tilde. Again you can

see u tilde or now you can say u tilde equals principal eigenvector of H H Hermitian that

is eigenvector corresponding to largest eigenvalue of H H Hermitian.
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And now u bar is simply u tilde divided by norm of u tilde which is principal eigenvector

with unit norm remember you can simply scale the eigenvector by any quantity it will

still be an eigenvector. So, this is the you can say principal eigenvector of H H Hermitian

with this is a principal eigenvector of H H Hermitian with unit norm great.

And therefore, that basically gives us both the transmit and receive beamformers and we

have  very  interesting  expressions  for  them  the  transmit  beamformer  u  bar  optimal

transmit beamformer.
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So, to summarise you have the MIMO Beamforming problem y bar equals H x bar plus n

bar x bar equals. So, this is v bar times x plus n bar that is your y bar and at the receiver

you perform u bar Hermitian v bar y bar which is u bar Hermitian H v bar x plus u bar

Hermitian n bar.

And  remember  what  you  are  doing  here  is  as  I  already  told  you  have  to  perform

beamforming at both the ends in the MIMO system. So, you have the transmitter you

have the receiver your transmitting from the transmitter in a particular direction at the

receiver your also collecting or your also processing the signal your steering the receiver

antenna array in a particular  direction.  So, this  is  basically  you are transmit  steering

remember these all electronic steering so you do not need to physically steer and this is

your receive steering.
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And u bar u bar equals eigenvector of H H Hermitian corresponding to larger eigenvalue

or principal H H Hermitian and v bar equals principal eigenvector of H Hermitian H.

Now  later  what  we  will  see  is  we  will  see  what  is  known  as  the  singular  value

decomposition of the channel matrix and it will turn out that u bar and v bar are in fact,

the dominant  left  singular and right u bar is the dominant  left  singular vector which

means singular vector corresponding to the larger singular value.

And similarly v bar is the dominant right singular vector singular vector corresponding to

larger singular value. In fact, we will see later that is u bar comma v bar are the dominant



singular and this is a key phrase not eigenvectors, but singular vectors of H from the

SVD  what  we  call  not  the  EVD  from the  SVD  which  is  called  the  singular  value

decomposition.  From the singular  value decomposition  and further  from the singular

value decomposition and remember dominant singular values means corresponding to

largest singular value.
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Dominant singular vector means corresponding to the largest singular value and in this

context also we have seen a very interesting optimization problem that is if you take a

positive semi definite matrix x bar transpose A x maximise subject to the constraint norm

x bar equal to 1 or norm x bar less than or equal to 1. Then x bar equals principal

eigenvector provided A is positive semi definite remember x bar transpose x provided A

is PSD positive semi definite matrix provided x bar is a positive semi definite matrix this

is a principal eigenvector of A that is a maximum A bar.

Now similarly  if  you minimise,  now this  is  another  interesting  analogue.  Now, this

problem is convex minimise x bar transpose x bar such that norm x bar of course, this is

not convex again in the sense that the constraint is not convex norm x bar greater than or

equal to 1, then x bar equals eigenvector corresponding to smallest eigenvalue.
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So, there are there is a analog this problem eigenvector corresponding to x bar equals

eigenvector  corresponding  to  the  smallest  eigenvalue.  And  therefore,  this  is  a  very

interesting  application  as  we  have  seen  here  that  is  basically  with  respect  to  beam

forming in MIMO system to determine the top table transmit and receive the unit norm

transmit and receive beamformers which are given as v bar optimal transmit beamformer

is the principal  eigenvector  of H Hermitian H or you can also say the dominant  left

singular vector of H.

And u bar is the principal eigenvector of H H Hermitian that is the dominant left singular

vector of H, the channel matrix H is the channel matrix of the MIMO wireless system

alright.  So,  with  this  interesting  observation  or  this  completing  after  completing  this

interesting example we will stop here and we will continue in the subsequent modules.

Thank you very much.


