
Applied Optimization for Wireless, Machine Learning, Big Data
Prof. Aditya K. Jagannatham

Dept. of Electrical Engineering
Indian Institute of Technology, Kanpur

Lecture – 47
Convex Optimization Problem representation: Canonical form, Epigraph form

 Welcome  to  another  module  in  this  massive  open online  course.  So,  we looked  at

various optimization problem sort of in formally, what we are going to or what we are

going to do in this module. And the subsequent a few of the subsequent modules is to

basically set out or basically lay down the sort of formal framework to basically state or

to for the formulation of a Convex Optimization Problem, alright.
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So, let us discuss let us begin our discussion so, as to speak on the formal framework of a

convex optimization of a convex optimization problem. And now, a convex optimization

problem as  we  have  seen  in  the  standard  form,  alright  this  can  be  thought  of  as  a

canonical form or the standard form of a convex optimization problem or a textbook

convex optimization problem can be stated as follows; that is you minimise or this can

also be sometimes written as min in fact, we frequently simply write as min period which

means minimize an objective function, alright. 

This is basically can be objective function vector can be objective function of a scalar.

So, g naught of x bar subject to some constraints like we have seen so far or s dot d dot



or  t  dot  subject  and  these  constraints  can  be  g  i  of  you  can  have  any  number  of

constraints g of x bar less than or equal to 0.

And now this objective function g naught has to be this has to be a convex remember for

a convex optimization problem this objective function is to be convex I can have these

constraints. Each of this constraint also is convex is a convex function I have i equals to

1, 2, up to l constraints and in addition I can have equality constraints g j tilde of x bar

equals 0. And these have to be for instance j equals 1, 2, up to m and these have to be

affine constraints  so,  equality  constraints  have to be affine in nature,  is  basically  the

implies that they are hyperplane. 

So, you have to have constraints of the form a j bar transpose x bar equals b j. So, these

are affine constraints or basically these are hyperplanes, so, the equality constraints. The

affine  the  inequality  constraints  can  simply  be  convex  function  and  of  course,  the

objective itself is a convex function,  alright.  So, this is a standard form of a convex

optimization problem so, you can think of this as a standard form convex optimization

problem.
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And, what is advantage of a convex optimization problem that we also formulated and

the important advantage as you might already know for a convex optimization problem is

a following that is when you look at a convex objective function and you minimise it the

minimizer for so, this is your convex objective. And the minimizer is or the optimum



value is unique, the minimizer need not be unique, but optimal value or you can think of

this as the minimum or optimal value is unique ok.
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Now, as against if it is nonconvex for instance, alright, so, if it is nonconvex now what

happens here is you have the concept of what is known as a low for instance. If we look

at this here, this is also it appears like a minimum, but this only minimum locally that is

in a local neighbourhood in a certain neighbourhood it is for instance if you look at this

neighbourhood  it  is  the  minimum.  But,  it  is  not  the  minimum  globally;  the  global

minimum that is minimum over the entire domain is this. 

So, this you have the concept of a global minimum and this is the local minimum ok,

when the objective is nonconvex. However, here local minimum any local minimum is

the global minimum ok. So, that is the advantage of convex that is any local minima is

global minima. Here, in nonconvex there can be very many local minima and only one

global minimum, alright. So, the problem is that the algorithms that is the optimization

algorithms that you employ can get trapped in this. 

So, they can get trapped in this local minima and they can yield spurious solutions which

are not actually the minimum, which are not actually the optimal values of the objective

function. So, for nonconvex you have this problem that for nonconvex the optimization

routine  or  optimization  algorithm  is  trapped  that  is  a  terminology  used  frequently,

trapped in local minima.
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Implies  there  is  a  you  have  spurious  solutions  or  non  optimal  solutions  and this  is

precisely because,  there is  only a whatever  is a local  minimum for a convex optima

objective function is a global or a convex optimization problem is a global minimum. So,

this  problem of spurious minima or local  getting  trapped in local  minima is  entirely

avoided by a convex optimization problem.

So, this problem does not and that is the advantage of a convex. So, this problem does

not  arise  in  a  convex optimization  problem and that  is  the advantage  of  the convex

optimization framework. That is the advantage of the convex optimization framework,

that the algorithm because there are there are no local minima, alright you only have

global minima so, the algorithm does not get trapped in local minima.
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Now, a related form in that something convenient reformulation you can think of you can

think of it is a convenient reformulation of a convex optimization is what is known as the

epigraph form which I am going to discuss shortly. So, a convex optimization problem

can be recast in what is known as it is epigraph form and that is the following thing that

is remember we said you have a convex optimization problem minimized optimization

objective g naught x bar subject to the constraints g of x bar less than equal to 0 for 1 less

than equal to i less than or equal to l.

 And g j tilde x bar these are affine constraints or I can write this directly as in fact, a j

bar x bar equals b j a j bar transpose x bar these are hyperplanes 1 less than equal to j less

than equal  to  m.  And,  now I  can write  this  in  epigraph so,  this  can be equivalently

expressed as follows. What I am going to do is I am going to introduce an additional

variable optimization. So, this optimization here is with respect to x bar I am going to

introduce an additional optimization variable t that is minimise x bar comma t. 

Now, I am going to minimise t and in the constraint now, I am going to add an additional

constraint  that  is  g  naught  of  x  bar  less  than  or  equal  to  t  ok.  And,  the  rest  of  the

constraints remain the same that is g i of x bar less than or equal to 0, i equals 1, 2, up to

l and a j transpose x bar equals b j; j equals 1, 2 up to m. So, these constraints remain

same so, my optimization objective now become simply t, optimization objective simply

becomes t and I have one additional constraint. 



And the point is the this is the convex optimization problem because, if you look at this

is simply linear this simply t. So, this is convex simply function of t this is convex and

we already said the optimization objective g naught x bar is a convex function, right. So,

g naught x bar less than or equal to t that is a convex constraint alright convex function

less than equal to t, alright. So, that is allowed in a convex optimization problem.

So, this is a convex constraint and therefore, this is still a convex optimization problem.

It  is  a  very  simple  and  elegant  reformulation  that  simplifies  many  complex  convex

optimization problem.
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So, this modified optimization problem this is still convex and it yields the same solution

that is the solution x bar of this problem optimal value that is optimal solution x bar of

the second problem of this of the second problem is the same as the optimal value x bar

that you obtain from the first problem. However, the second problem you are optimising

both with respect to x bar and t and this is termed as the epigraph form, this is termed as

the epigraph form of the problem ok.

And, in the epigraph form of the problem and as I already told you epigraph form it is

helpful in recasting this convex optimization problem in a more interesting or intuitive

form. So, if the epigraph form the advantage of epigraph form is basically it is helpful in

recasting in recasting convex optimization problems in more in a more interesting or

intuitive form in a more interesting or intuitive form.
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Now, let us look at a simple example to understand this better let us look at a simple

example for this epigraph form and a simple example can be the following thing which is

basically I want to. So, let us consider this problem minimize sometimes we can even it

is frequently also written even omitting this period after min. So, this stands for minimise

norm x bar the infinity norm subject to the constraint let us say there is some constraint

there  is  x  bar  belongs  to  the  set  S  that  is  it  is  a  combination  of  linear  and  affine

constraints.

Let us say some constraints this x bar must belong to the set S which basically a convex

set, I am not too worried about this constraints. So, this is are of now look at this the set

is convex. So, the constraints are convex and remember this is a norm infinite norm this

is a convex norm so, the objective this is a convex objective ok. As a convex objective

and therefore, this is in fact, a convex optimization problem ok. Now, this is in fact, a

convex  optimization  problem and now what  we want  to  formulate  is  the  equivalent

epigraph form? We want  to  formulate  the  equivalent  epigraph form and that  can  be

derived as follows.
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So,  I  can  write  this  as  the  epigraph  form minimise  remember  the  epigraph  form is

straight  forward  minimize  t,  objective  function  is  always  t  subject  to  the  objective

original objective. Of course, this minimization is over x bar comma t norm x bar infinity

is less than equal to t and the original constraints remain that is x bar belongs to this set S

so this is the epigraph.

Now, I can modify it slightly now if you look at this norm of x bar infinity. Let us say x

bar is a vector ok, n-dimensional vector norm x bar infinity is nothing, but the infinite

from is nothing, but maximum of magnitude x 1 comma magnitude x 2 magnitude x n.

And when we say infinite infinity norm is less than equal to t so, this implies so, this

constraints  here this  basically  implies  that  the maximum of  magnitude  of  x  1 up to

magnitude of x n, this is less than equal to t.

Now, the maximum of n components or n quantities less than equal to t, that is possible

only if each of the quantities is less than equal to t.  So, this in turn now as leads to

something  interesting  so,  this  implies  that  magnitude  x  1  less  than  or  equal  to  t

magnitude x 2 less than equal to t so on and so forth magnitude x n less than equal to t.
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Now, magnitude x 1 less than equal to t this implies that minus t less than or equal to x 1

less than or equal to t. Similarly, magnitude x 2 less than equal to t implies minus t less

than or equal to x 2 less than or equal to t and so on magnitude x n less than or equal to t

implies minus t less than equal to x n less than equal to t. 

And therefore, now the optimization problem above therefore, the epigraph form can be

simplified as minimise of t minimise with respect to t subject to minus t less than or

equal to each x i and right. Let me just write it explicitly to illustrate minus t less than

equal to x 1 less than equal to t minus t less than equal to x 2 less than equal to t.
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And, so on minus t less than or equal to x n less than or equal to t and original constraints

are already the are always there that is x bar belongs to this set s which is the original

constraint. And, this is something that is more intuitive and these are in fact, if you look

at these are some sort of box constraints you can think of this constraints x bar to lie in a

box of dimensions 2t.

(Refer Slide Time: 21:49)

In fact, that is what you will see. If you consider a 2-dimensional scenario; that means,

your x 1 so, if this is your x 1 and this is your x 2. So, x 1 has to lie between minus t and



t x 2 has to lie between t and minus t. So, that effectively limits your area that is your x 1,

x 2 has to lie in this so, this is the box ok so, this is the box in which your x 1, x 2 has to

lie, alright. So, this is basically your you can think of this as your box constraints alright

so, basically introduce introduces a box constraint for the original optimization.

 So, introduces a box constraint you can say that it introduces a box constraint for the

original  optimization  problem ok.  So,  it  sort  of  introduces  a  box constraints  for  the

original optimization problem. And, this is something that is it gives you an interesting

either gives you better intuition or it also gives you an interesting interpretation for the

original  optimization  problem  which  is  in  fact,  an  identical  it  is  an  equivalent

optimization problem. But, it  is sort of opaque, alright one can it is not a minable to

derive insights, alright. 

So, then this modified optimization problem is something that is more interesting and it

is easy to interpret and probably also analyse sort of without using regress analytical tool

sort of analyse it more or analyse or interpret it sort of simply by looking at optimization

problem, alright. So, this is an important in fact, we one can use this and we are going to

also use it from time to time to simplify or recast optimization problems, alright. So, we

will stop here and continue in the subsequent modules.

Thank you very much. 


