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Lesson - 45
Least Norm Signal Estimation

Hello, welcome to another module in this massive open online course. So, we are looked

at the least squares paradigm; let us look at it is analogue or a counterpart or something

that interestingly related to that which is known as the Least Norm Paradigm and that can

be described as follows.
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And these two always go hand in hand this is we so, far we have seen the least squares

paradigm. What you want to do now is the least norm framework and this can also be

used for Signal Recovery or you can also think of this as single estimation ok. And the

least known paradigm is as follows so, consider the following problem where in we have

again y bar equals A times x bar and A is an m cross n matrix similar to what we have

seen previously.

But while previously m is greater than n in the least squares framework we will consider

a framework where m is less than n. That is the number of rows is much lower than the

number of columns so if you look at this, it will look like this which is this is your matrix



A this is your vector x bar this implies that number of rows is much less the number of

columns. One can call this as a wide matrix; just like when you are number rows is more

than the number of columns we call that as a as a tall matrix ok.
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Remember previously in the least squares we had a tall matrix ok; number of rows is

more than the, this is number of rows is more than the number of columns. Now we have

a wide matrix that is number of rows that is m is less than the number of columns ok.

Which basically implies number of equations as you remember this is the number of

rows each row is an equation.

Remember  row equals  equation  and  each  of  this  is  an  unknown each  element  of  x

because x is the unknown signal you can say is unknown. So, each column you can say

each column of a correspondence to an unknown ok. So, rows equal equations equals m

columns equals unknowns equals m. So, this implies that for this kind of system when m

is less than n; this implies that number of equations is smaller than number of unknowns

which implies that system is under determined, there are not enough constraints, under

determined not enough constraints implies not enough constraints on x bar.
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 And when the system is under determined that is there is not enough constraints not

enough equations there are only n equations, but n unknowns. This means that typically

there is no unique solution or typically there are more than one possible there are infinite

number of solutions. This implies typically again let me qualify this typically with verify

propelled typically more than one solution or infinite or an infinite number of solution.

Now, therefore, how to determine now therefore there is an infinite number of solution

infinite number of possible solutions.

So,  there  are  fewer  constraints  alright  there  are  fewer  constraints  on  x  bar  ok.  And

therefore, how do you determine x bar which means you have to additionally constrain x

bar naturally if there are fewer constraints the only way to fix x bar or determine the

possible  value  of  x  bar  is  to  introduce  additional  constraints  ok.  So,  therefore,  to

determine  x  bar,  one  have  to  introduce  additional  constraints,  one  has  to  introduce

additional constraints. And therefore, one such difficult constraint is to find the energy

efficient solution or if you look at norm x bar minimize the norm of x bar so this is your

additional constraint.
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It  basically  minimizes  the energy of  x bar  which implies  that  the solution is  energy

efficient; implies that you are trying to find an which implies you are trying to find a

energy efficient solution. That is what is it is a out of all the so remember we said it is

says infinitely many solutions all it x bar is not unique infinitely many possible values of

x bar because it is an undetermined system. Out of all these x bar find the one that is

minimum norm that has the minimum energy, that is the solution that we desired then

that is how we are constraining this problem.

At this it is precisely known as the least norm problems. So, this means out of infinitely

out of infinite solutions find the one that has least norm. So, therefore, this is known as

the least norm framework least norm or minimum norm, least norm you can also say min

norm least norm the thing is the previous one was least square as remember we had no

solution. So, find the one that minimizes the approximation error y bar minus A x bar or

y bar minus h x bar. Here we have more than one solution we have infinitely many

solutions. So, find the one that has minimum norm ok. And I think I am using yeah the

matrix A and strainley straight forward. And therefore, the relevant optimization problem

for this least norm solution can be formulated as follows.
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The relevant  optimization problem for this  is  as you have already seen the objective

function is to minimize norm x bar and the constraints now is y bar equals A x bar. Even

also justify this minimum normal that naturally occurring signals have do not have an

infinite number of energy infinite amount of energy, they are typically limited in terms of

energy. So, therefore, we want to make sure that the signal corresponds to something that

is naturally occurring which means such energy is bounded.

So, this is justified because naturally occurring signals have limited. In fact, we will see

an  interesting  version  of  this  later  when  naturally  occurring  signals  will  say  have  a

sparsity. They are naturally sparse in nature, but for us to begin with let us look at the

minimum norm solution. In fact, this is the minimum two norm and this is basically this

linear system this is your constraints; so, minimum norm that is objectives. So this is the

constraint for our optimization problem.
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And this can be solved as follows so what I can do is I can write this equivalently solving

this is fairly straightforward we can use earlier techniques minimum norm x bar square

subject to the constraints y bar equals A x bar. Therefore, one can form the lagrangian

which is  equal  to  objective  function  x  bar  norm x  bar  square  is  nothing,  but  x  bar

transpose x bar plus lambda times A x bar minus y or y minus A x bar A x bar minus y

bar. In fact, this has to be lambda bar transpose remember because how many constraints

we have we have m constraints; each row is an equation. So, there are m equation so m

constraints  so there has to be one Lagrange multiplier  for each constraints.  So,  your

lambda bar will in fact be a vector so that is basically lambda bar.
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So, this is one lagrange multiplier for each constraint it is one lagrange multiplier for

each constraint.  And now when you take the gradient of this  so your F equals x bar

transpose x bar plus lambda bar transpose A x bar minus y bar. Now we take the gradient

we have done this before x bar transpose x bar is nothing, but x bar transpose I identity

types  x bar. So,  this  is  twice x bar plus lambda bar transpose A into x bar is  c bar

transpose x bar so the gradient of this is c bar. So, this will be a transpose lambda bar a

transpose lambda bar minus lambda bar transpose y bar gradient with respect to x bar is

0 and this  is  equal  to  0 setting gradient.  So,  you are setting the gradient  setting the

gradient equal to 0.
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 And once  you solve  this  thing  this  implies  you will  get  something  interesting  this

implies that x bar equals minus half a transpose lambda bar remember lambda bar is a

vector. So, I cannot simply get it or manipulate it otherwise so I simply have to write x

bar equals minus half lambda minus half a bar transpose a transpose lambda. How to

determine lambda bar? Use the constraint  this  similar  to what we have to determine

lambda bar use the constraint. Remember or constraint is A x bar equals y bar substitute

x bar which implies A minus half A transpose lambda bar equals y bar which implies

minus half A, A transpose lambda bar equals y bar which implies that lambda bar equals

minus twice AA transpose inverse into y bar.
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So this is basically so, if you call this as 2 this is expression for lambda bar and if you

call this as 1. Now what we able to do substitute lambda bar from 2 in 1 and what we get

here is that lambda bar equals we have already seen this x bar equals x bar equals minus

half a transpose lambda bar substitute lambda bar minus half A transpose minus 2 AA

transpose inverse into y bar so the minus half and minus 2 cancel. So, this will be a

transpose A transpose inverse into y bar this is your x hat, for your signal estimate that

has the signal estimate that has the least norm correct. So this is basically your least

norm.
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What we have obtained is the least norm this is the least norm signal estimate and this

also  known  as  the  least  known  solution.  So,  you  can  write  this  as  x  hat  equals  A

transpose AA transpose inverse into y bar ok. So, this is also known as the least norm

solution or minimum norm we can also there are many names. So, this is also known as

the least norm solution alright that gives you the solution x hat which has the minimum 2

norm. And as I already told you this is suitable or well suited for scenarios where there

are it is a under constraint system.

That is your pure equations than unknowns your more unknowns which means there

infinitely possible infinitely many possible solutions. So, we have to constraint we have

to introduce additional constraints we want to find the solution one the one which has the

minimum  norm of  the  minimum  energy. And  this  expression  gives  you  close  form

expression for the minimum norm solution alright we will stop here.

Thank you very much.


