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Linear modeling and Approximation Problems: Least Squares

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  in  this

module,  let  us  look  at  another  class  of  problems  or  another  class  of

optimization  problems,  specifically  pertaining  to  Linear  modeling  and

Approximation, which arise very frequently in various applications of course

both  engineering,  science  and so  on  so.  This  is  a  very  important  class  of

problems.
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This is termed as linear wherever you have models, and typically more most of them or

frequently they are modeled as linear model. So, we have linear modeling and

approximation problems, linear modeling and approximation problems. And

what you can see in this is that if you consider now consider the linear model,

general linear model can be described as follows. Consider the linear model y

bar equals A x bar, where we have A, this is in general an m cross n matrix,

and which implies of course that if x is a vector, x is a n cross 1 vector. And y

bar is a naturally an m cross 1 vector.
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Now, what we assume or typically in this model, this vector x bar is unknown, which has

to be determined. So, x bar is unknown and it has to be determined so, x bar is

to be determined. And now frequently what you have also in such a system,

now of course let us start by considering a simple example. Let us say A is

square matrix that is m is equal to n ok. If m is a number of rows, n is a

number of columns of A. Let us now if you look at this system, you can see

what is m in this  system, m is basically  the number of equations,  it  is the

dimension of y. So, m equals number of equations. And n equals number of

unknowns ok.
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Now, what happens in this is that let us assume a simple scenario to begin with if m

equals n, and this everyone would know m equals n. And A is invertible, it is if

equals m and A is invertible, remember this is as to be given. Now, this implies

I can find y y bar is equals to x bar, I can determine x hat or the estimate of x

equals  A inverse y bar ok.  This  I  think is  a  typical  solution  for  the linear

system, which most people would know almost students would know.

Now, however frequently what we have is that you have this  y bar is well,  it  is not

exactly equal to A x bar its. Actually, A x bar plus n when n is the noise, I write

it as y bar equal this is the linear model, y bar equals A x bar. And A is your m

cross n matrix, and m is greater than n, m is greater than n ok. So, what that

means  is  this  implies  that  number  of  equations  is  greater  than  number  of

unknowns.
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And which also implies that this is basically an over determined system, because number

of equations is greater than this is basically an over determined system. Now,

of  course  over  determined  system  frequently,  this  has  no  frequently  no

solution exists, unless the vector y bar belongs the column space of A. So,

frequently typically  because of the noise in this  system, typically  does not

does not exist. For instance, you can take a simple example. Let us take m

equal to 3, what we have is we have y 1 equals a 1 1. So, A equals 3 cross 2

matrix. So, we have y 1 equals a 1 1 x 1 plus a 1 2 x 2; y 2 equals a 2 1 x 1

plus a 2 2 x 2; y 3 equals a 3 1 x 1 plus a 3 2 x 2.
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Now, you can see these represent three line. So, what happens when you plot this things,

you have three lines. So, you basically have three lines each represents a line

ok. Now, the solution now unless all the lines intersect no there is no solution

unless all the lines intersect at a common point all right. So, you see this point.

So, you have three lines that is three equations two unknowns ok. So, there is

no solution unless all the lines intersect at a there is no solution unless all the

lines intersect at a single point all right.

So, you have three equations basically, two unknowns. And frequently if you take three

lines at random, then they will naturally not intersect. It is highly unlikely that

they all intersect at a single point, which means there will be no solution. So,

in such a scenario you will have to find an approximate solution or what I

mean by that is some solution that best fits the model or best explains the

observed vector y. This is also known as the maximum likelihood vector x ok,

so it is interesting.
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So,  typically  and  this  is  because  this  happens  because  of  the  noise  in  the  model.

Typically, what happens is you have y bar equals A x bar plus n bar ok. So,

this is what is this is your model noise. And what happens because of this

model noise this means, your y bar not equals is not equal to A x bar, which

means if you form y bar minus A x bar, there for any x bar there is always,

because there is no solution for any x bar, there is always an error. This is

termed this is basically your model error or your approximation error vector.

So,  you  can  also  call  this  as  a  error  vector,  which  is  basically  the

approximation error. This is basically the approximation error.
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And we have to find x bar, you have to find best x bar that is which best explains y bar,

what do you do is minimize the approximation error. Now, error is of course a

vector. What does it mean to minimize the error, we will simply minimize the

norm of this error vector. So, we will minimize the norm of the error vector,

which is basically equal to minimizing norm of y bar minus A x bar, which is

basically equivalent to minimizing norm square of y bar minus A x bar square

ok.

And this problem where you are and this is the two norm square, the l two norm. And

when you are minimizing the norm square, so this is the vector x bar, which

gives you the least squared error norm. So, this is known as the least square

solution this is known as the least square solution or this is known as the least

squares problem, in fact this is known as the least squares problem.
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And this is very popular in communication. This is arises, when we are going to express

the  show some example,  so this  arises  very frequently  in  communication  and signal

processing applications ok. So, this arises very frequently in communication and (Refer

Time: 11:39). And in fact if you look at, this is nothing but a this is a quadratic objective

function or this also termed as a quadratic program. So, this minimize norm of y bar

minus A x bar square. This is termed as a it is a quadratic objective function. It is termed

as a quadratic program or basically a QP ok. And finding the solution of this QP gives the

best estimate this is also known as the maximum likelihood estimate. So, the solution of

this  gives the least  squares problem, gives the maximum likelihood estimate.  In fact,

strictly speaking the maximum likelihood estimate in Gaussian noise ok.
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So, just gives the what is termed as a or basically if one asks the question what is the

vector x bar, which has the maximum likelihood right, which best explains the y, which

has the maximum likelihood of having occurred that is the vector x bar, which basically

minimizes the least squares, this which is the solution to the least squares problem that is

it minimizes the square or it gives the least squared error least squared norm of the error

vector ok. And this can be solved as follows and it is not very complicated. So, what we

do is that to find the solution. So, we want to find the least square solution, and that can

be found as follows. We want to minimize norm y bar minus A x bar square.
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So, what we do is basically remember norm square of a vector, this is nothing but vector

transpose times itself. So, this is y minus A x bar transpose times y bar minus A x bar,

which is equal to y bar minus x bar transpose A transpose into y bar minus A x bar, which

is equal to y bar transpose y bar minus x bar transpose A transpose y bar minus, now this

is to be transpose minus y bar transpose A x bar plus x bar transpose A transpose A into x

bar.

Now, if you can look at this these two quantities are the same, these are the transpose of

each other and scalar quantities x bar transpose A transpose y bar y bar transpose A x bar.

So, you can take the twice of one of these, so this will be finally simplified as y bar

transpose  y  bar  minus  twice  x  bar  transpose  A x  bar  transpose  A y  bar  plus  x  bar

transpose A transpose A x bar. 
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And now if you call this as now this is an objective function, because here you have no

constraint, you have only the objective function as x bar. So, you take the gradient of F

with respect to x bar. And now, we can see y bar transpose y bar gradient of that with

respect to x is 0 minus twice; x bar transpose A transpose you can treat this as x bar

transpose c bar, so the gradient is simply c bar. So, minus twice A transpose y bar plus x

bar transpose A transpose x bar that is you can treat this as x bar; you can treat this as

matrix P, it is positive semi definite, x bar transpose P x bar. So, the gradient is twice P x

bar or twice A transpose A y bar. 



Now, you said this equal to 0, to find the optimal value. So, you set gradient equal to 0 to

find optimal value. This implies now if you said this equal to 0, what you now this 2’s

cancel ok, you cancel the 2. So, what you get is A transpose A y bar equals A I am sorry

A transpose A, this has to be A transpose x bar, so we have A transpose A x bar equals A

transpose y bar.
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And what this implies is basically you have x bar or you can call it x hat, typically it used

in the context of estimation.  The optimal value of x is x hat equal to A transpose A

inverse into A transpose y. Assuming A transpose A to be invert, because we can see A

transpose A will  always be a  square matrix  correct,  because  A is  m cross  n,  and A

transpose is n cross m. So, A transpose A will be n cross n matrix I am sorry, this is a

transpose A will be n cross n. A transpose A inverse will also be n cross n. So, this is the

least square solution.

Assuming,  A transpose A is  invertible,  it  is  a  very compact  and elegant  form. Least

squares  problem is  also  termed  as  the  L S.  And this  assumes  that  A transpose  A is

invertible. This assumes A transpose A to be invertible, so that basically gives us the least

square  solution.  And  like  this  is  one  of  the  most  fundamental  problems  in  signal

processing, and also for that matter in estimation, and communication and so far as so

frequently.



A solution is very well known, and it is thought in a lot of courses. And in fact this forms

this analysis of this problem from one of the staples of several course alright.  And I

think, this is one of the most important optimization problems with various applications

that we are going to encounter in this course. So, we will stop here, and continue in other

modules.

Thank you very much.
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