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Inner Product Space and its Properties: Linearity, Symmetry and Positive Semi-

definite

Hello, welcome to another module in this massive open online course. We are looking at

the  mathematical  preliminaries  for  optimization;  let  us  continue  our  discussion  with

another concept namely an inner product space, ok.

(Refer Slide Time: 00:30)

So, you want to start looking at the concept of what is known as an inner product space.

Now, what is an inner product space? Now, an inner product space of a real vector; now

the inner product of a real vector space; the inner product of a real vector space is an

assignment of a real number, is an assignment of a real number.
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And for any 2 vectors u bar v bar that is, denoted by this notation u bar, the inner product

of u bar comma v bar and this is defined for any 2 vectors u bar b bar in this case real

vectors for any 2 vectors u bar comma v bar. And this is the inner product, which is a real

number; in the case of a real vector space and which satisfies the inner product satisfies

the following properties.
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The  inner  product  of  the  vector;  satisfies  the  following  properties.  First  property  is

linearity, which is a u bar plus that is the inner product of a linear combination a u bar

plus b v bar is the linear combination of the inner products that is, this is a times u bar

inner product of u bar w bar plus b times the inner product of v bar comma w bar ok.



So, this basically is the linearity property that is a linear, the inner product of the linear

combination a u bar plus b v bar with the vector, w bar is the linear combination of the

inner products a times the inner product u bar w bar plus b times the inner product of v

bar comma w bar; this is the first property. Then we have the symmetric property or the

symmetry. It is very simple that is the inner product of u bar v bar equals the inner

product of v bar comma u bar. Then, we have so if you call  this property number 1

linearity to symmetry then we have the positive semi definite property.
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The positive semi definite property it must be the case that for any u bar, that is for any u

bar element of the vector space v then the inner product of u bar with itself must be

greater than or equal to 0. And more importantly and also u bar the inner product with

itself equals 0, if and only if u bar as itself 0. So, inner product is 0 if and only if the

vector u bar is 0.

So, these are so this is the definition it is an assignment of a real number for a real vector

space  it  satisfies  the  linearity,  symmetric,  asymmetry  and  the  positive  semi  definite

properties  ok.  Let  us  look  at  a  simple  example  to  understand  this  for  instance  the

standard product, let us consider the standard dot product between 2 vectors alright.
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Consider 2 vectors the dot product is defined for between 2 vectors consider u bar equals

u 1, u 2 up to u n and v bar equals v 1 v 2 up to v n. Then now these are real vectors n

dimensional vectors that is you can say that belong to the space of n dimensional real

vectors denoted by this bold R, R to n. And this is also termed as the Euclidean n space.
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This is also termed as the Euclidean n space and the inner product in this Euclidean n

space between vectors u bar and v bar is defined as u bar transpose v bar, which is

basically if you look at this that is u 1, u 2 u n. Row vector times the column vector v 1, v



2, v n. Which is basically u 1, v 1, u 1, v n ok. So, this is the definition of the dot product

ok. So, this is the dot product between 2 n dimensional real vectors.
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Something that you might have well see in your in your vector space or vector calculus

class in high school all right. This is a standard dot product which is also denoted by the

dot operator that is u bar dot v bar ok. This is the dot product between 2 vectors. In fact,

more specifically to real n dimensional vectors, now we will show that dot product is an

inner product.

Now, that is very simple to see, first let us look at the linearity property. If you look at a u

bar plus b v bar dot product with w bar that is simply a u bar plus b v bar transpose times

w bar, as we have seen that is the definition of the dot product.
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Which is a times u bar transpose w bar plus b times v bar transpose w bar which is a

times the inner product of u bar with w bar plus b times the inner product of v bar with w

bar ok, so it satisfies the linearity property. Now 2 now coming to the symmetry property,

we have  u bar  dot  product  v  bar  which is  equal  to  u bar  transpose v bar, which  is

basically v bar same as v bar transpose u bar which is v 1 u 1 plus v 2 u 2 plus v n u n

which is v bar u bar and 3.
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So, symmetry satisfies a symmetric property, now we have to look at the positive semi

definiteness. Now positive semi definite property, now you can see that the inner product

of u bar with itself is u bar transpose u bar, which is u 1 square plus u 2 square plus u n

square; which is greater than or equal to 0 further. In fact, we have seen this is nothing

but this is used to define the 2 norms square that is, this is the l 2 norm square norm u bar

square which is greater than or equal to 0 in fact, equal to 0 if and only if some of the

squares is 0, which means each of the components is 0 u 1 equals u 2 equals u of n equals

0 which means u bar equals 0.

So, it is positive semi definite it is positive semi definite that is u bar inner product of u

bar with itself is always greater than equal to 0 it is 0 only when u bar the vector is

identically 0 all right. And therefore, the standard the dot product is an inner product.

And in fact, this is also termed as the standard inner product, this is also termed as the

standard inner product on R n that is the Euclidean n space. Or the n dimensional set of n

dimensional space of real vectors Euclidean n space or the n dimensional space of real

vectors the dot product is an inner product.
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Let us now consider another example for 2 dimensional vectors instance.
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We have x bar equals x 1 x 2 and y bar equals y 1 y 2. So, both of these are basically 2 d

vectors that is there belong to the 2 dimensional Euclidean space. And let us define this

assignment x bar y bar for this 2 2 d vectors as twice x 1 y 1 minus x 1 y 2 minus x 2 y 1

plus 5 x 2 y 2. Now what we want to do is we want to show that this is an inner product;

this is a valid this assignment is a valid inner product and this can be shown as follows as

usual we start with the linearity property.
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Now let us consider a vector that is a x bar plus b x tilde that is; a times x 1 x 2 the 2

dimensional vector plus b times x 1 tilde x 2 tilde all right. So, we are taking a linear

combination of the 2 vectors x bar and x tilde. Now for this to be an inner product let us

consider now a x bar plus b x tilde the inner product with any vector y bar. 
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Now, this can be shown as now, we can see this is equal to twice a x 1 plus b x 1 tilde

into y 1 minus a x 1 plus b x 1 tilde into y 2 minus a x 2 plus b x 2 tilde into y 1 plus 5

times a x 2 plus b x 2 tilde into y 2. And now you can clearly see this is linear that is this

can be written as a if you separate the components and write it you can easily see that

this is a times x bar comma y bar plus b times x tilde comma y bar and therefore, it is

linear  ok.  So, satisfies implies that this  is  linear  alright.  So,  we have shown that  the

assignment is linear, now let us know symmetry the symmetric property and this can be

shown as follows. 
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So, coming now to the aspect of symmetry you can see that x bar y bar this is equal to

twice x 1 y 1 minus x 1 y 2 minus x 2 y 1 or minus y 2 x 1, I am sorry minus x 2 y 1,

minus x 2 y 1 plus 5 x 2 y 2 ok. And now this can also be written as without any effort

you can see this is twice x y 1 x 1 interchanging the terms the second inter term this will

be minus y 1 x 2 minus x 1 y 2 plus 5 y 2 x 2. And you can readily see that x 1 y 2 I will

write as minus y 2 x 1.
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And you can readily see that this is nothing but the assignment of y bar comma x bar. So,

we have x bar y bar equals y bar comma x bar. And hence, in this implies that that it

satisfies the symmetry property and finally, now coming to the positive semi definite as

positive semi definite property.

(Refer Slide Time: 20:36)

Coming now to the positive semi definite property, now if you look at x bar x bar that

will be twice x 1 square minus 2 x 1 x 2 plus 5 x 2 square, which is equal to now I can

write this as the sum of 2 terms x 1 square plus x 2 square plus 2 x 1 x 2 plus x 1 square

plus 4 x 2 square minus 4 x 1 x 2. 
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And this is equal to well x 1 plus x 2 whole square plus x 1 minus 2 x 2 square, which is

greater than or equal to 0. So, sum of 2 perfect squares this is greater than equal to 0. So,

implies this satisfies the positive semi definite property. This satisfies the PSD property

and that you can see this is equal to 0 only when it is equal to 0; only if x 1 plus x 2 both

must be 0 because it is sum of perfect squares. So, both must be 0 x 1 minus 2 x 2 must

also be 0, and this implies that x 1 equals x 2 equals 0. So, it is only 0 when x 1 equal to

x 2 equal to 0 that implies x bar equals. So, we have the PSD property which is x bar x

bar the assignment is greater than or equal to 0 and equal to 0 only if x bar equal to 0.

(Refer Slide Time: 23:16)



That is what we have shown therefore, it also satisfies the PSD property, hence because it

satisfies the linearity symmetry and PSD properties, this is an valid inner product all

right. So, finally, what we have is that x bar comma y bar equals 2 x 1 y 1 minus x 1 y 2

minus  x  2  y  1  plus  5  x  2  y  2  we can  now claim that  this  is  a.  And this  is  not  a

coincidence. In fact, such an inner product can be constructed by observing the following

thing I can write this thing as.

(Refer Slide Time: 24:15)

This is equal to x 1 x 2 twice minus 2 minus 1 minus 1 comma 5 y 1 y 2 which is nothing

but; x bar transpose A y bar where a is this matrix you have A is the matrix 2 cross 2

matrix which is given as 2 minus 1 minus 1 5 you can see that this  is nothing but;

identical to the this is basically another way of writing the inner product that we have

just defined. And now you can show in a very interesting property of this matrix in fact,

this matrix A is a positive semi definite positive definite matrix all right. So, you can see

that this matrix A is a positive definite matrix.



(Refer Slide Time: 25:24)

And you can see this as follows remember we said this matrix is first see that this matrix

is symmetric. We have A equals A transpose, further if you look at the Eigen values a

minus that is if you said the determinant of a minus lambda equal to 0, then what we

have is you have the determinant of 2 minus lambda minus 1 minus 1 5 minus lambda

equal to 0; this implies 2 minus lambda into 5 minus lambda plus 1 equal to 0. This

implies  now  if  you  simplify  this  lambda  square  minus  7  lambda,  I  am  sorry  this

determinant is minus 1 minus lambda square minus 7 lambda plus 10 minus 1 equal to 0.
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Implies lambda square minus 7 lambda plus 9 equal to 0 implies; lambda equals well 7

plus or minus square root of 7 square 49 minus 9 36 7 plus or minus 13 divided by

square root of 13 divided by 2. And you can see both the Eigen values are greater than 0

all right it has 2 Eigen values and the Eigen values are strictly greater than Eigen values

are strictly greater than 0. So, symmetric plus the Eigen values greater than 0 implies A is

positive definite ok. So, A is a positive definite matrix.

So, A is a positive definite matrix and therefore, hence x bar transpose. So now, in fact an

interesting property and you can easily show this that is; if you look at 2 vector if we

define a inner product that x bar between x bar and y bar as x bar transpose a y bar,

where A is positive definite this is a inner product that is, this is a is an this is a inner

product. Where A is a symmetric positive let me also just write this a is a where A, A is a

inner product.

This is an inner product x bar transpose A y bar, where A is a symmetric positive definite

matrix is an inner product all right. And one of the other interesting aspects of the inner

product is  that it  can be also be used to define a norm, and that is  one of the most

interesting and important aspects of the inner product it induces an norm and that norm is

given as follows.
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So, the norm is so inner product can be used to define a norm. So, the norm can be

defined using this concept of inner product. And in fact, it can be defined as follows we

have norm of u bar square this is equal to the inner product of u bar with itself.
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Which means, basically the norm of vector u bar is equal to square root of the inner

product of u bar with itself. And in fact the unit norm vector can now be defined as u hat

equals u bar divided by norm of u bar that is u bar divided by square root of u bar u bar

and.  In  fact,  what  we  have  seen  is  and  this  is  also  this  process  also  termed  as

normalization that is, when you divide a vector by it is norm you can also say that the

vector is normalized. And you can also see this is true for the standard inner product that

is the standard inner product on R n that is if you look at x bar comma x bar where x bar

belongs to R n and this is the standard inner product.
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We already see in that inner product of x bar with itself is basically this is x 1 square plus

x 2 square plus x n square which is nothing but the l 2 norm square, ok. And therefore,

this  is  the square of  the  norm and we have  already seen this  for  the standard  inner

product, what this result is that; not just for the standard inner product which is given

with the dot product of 2 vectors. 

But any inner product on these 2 vectors x bar y bar can be used to define a norm that is;

the norm is given as the square root of the inner product of x bar with itself for instance

in the previous example we have seen x bar transpose a y bar all right, which means the

norm of x bar under that inner product is given as square root of x bar transpose A x bar

ok. So, the norm of x bar is equal to square root of x bar transpose A x bar and this is for

the previous example. Let us look at other examples of inner products.
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So, we have some other examples we are already seen, u bar transpose v bar that is the

standard  norm an  R  n  this  is  an  inner  product  this  we  already  seen.  Now  another

interesting  application  of  inner  product  is  let  us  consider  the  space  of  continuous

functions  on an  interval  a  comma b  denoted  by c  of  a  comma b,  that  is  the  set  of

continuous functions on a comma b on interval a comma b. And let us say we have 2

functions F comma g which belong to C of a comma b that is their continuous functions

on the interval a comma b.
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Then the assignment defined as F of g equals integral over the interval a comma b F of x

g of x or F t d t that is this integral F of x g of x d x this is an inner product like this is a

very interesting application. In fact, this can now be used to define a norm so this is an

inner product for functions F comma g, and in fact, the norm that arises is basically

nothing but norm of F is integral a comma b or norm of F square a is basically inner

product of F with itself that is integral of a comma b, integral on the interval a comma b

F square x dx or this is nothing but the energy of the signal; that is, if you replace if you

look at this as signal in time.
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If I think of this as a signal in time, this is basically the energy of the signal in interval,

this is the energy of the signal in the interval a comma b all right. So, that is another so it

can also be used. So, basically one can also define an inner product correct, one can also

define an inner  product  on the space of continuous functions  all  right and therefore,

define the norm of the norm and as well as the norm square. In fact, the norm square of

the function is based or the signal is the energy of the signal in that particular interval.

Another interesting example of this inner product space consider the space of m cross n

matrices.
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So, we have the space of m cross n matrices example m equal to 3 n equal to 2 implies;

we have 3 cross 2 matrices. And for instance the 3 cross 2 matrix is are equals a 1 1 a 1 2

a 2 1 a 2 2, a 3 1 a 3 2 and we have B the matrix B equals b 1 1 b 1 2, b 2 1 b 2 2 b 3 1 b

3 2. And the inner product A B defined as trace of B transpose A that is, the now this is

an interesting concept that is trace of a square matrix.
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This is the trace of a square matrix the trace operator this is defined as equal to is equal

to sum of the diagonal elements of a square matrix, some of the diagonal elements of a



square matrix that is the trace of the square matrix. And this can be shown to be an inner

product; this can also be shown to be an inner product. Trace of this can also be shown to

be an inner product all right. So, what we have done in this module is we have looked at

the inner product it is definition the various properties or when, is an assignment and

inner product and several examples. We will continue this discussion in the next module.

Thank you very much.


