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Practical Application: Robust Beamforming With Channel

Uncertainty for Wireless

Hello,  welcome to  another  module,  in  this  massive  open online,  course.  So,  we are

looking at various types of Beamforming and in this module let us look at, another very,

important and very interesting and in fact, a very practical format of beamforming that is

termed as Robust Beamforming. And it is going to take, it is a little involved. So, it is

going to take a little time to explain this, but nevertheless let us start this topic of robust.
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Now, let us go back and look at what we are doing in beamforming. Now, if you go back

and look we have this, multiple antenna arrays at the receiver. In fact, this can also be

there at the transmitter. So, you have a multiple antenna, array and you have a transmitter

and you can have several interference also; that is what we have seen or you can have

secondary users and primary users. But essentially what we are doing is the following

thing. We have this,  channel  coefficient,  corresponding to the l  antennas which were

given by h 1, h 2 so on up to h n.



Now, these are the channel, coefficients correct; these are the channel coefficients. And

you have your channel vector which is if you put, these, things as a vector, you have the,

vector  the  channel  vector  and  this  now, this  channel  vector;  this  knowledge  of  the

channel coefficient. This is also termed as the Channel State Information.

If, you look at papers for instance research papers on wireless communication, you will

see this is frequently termed as CSI, which is basically your channel.
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This is also termed as, Channel State Information. Now, the thing about Channel State

Information that is this knowledge of this channel vector h, it is not available a priori all

right, it is not available in the beginning which means, this has to be, somehow obtained

all  right  because  the  channel  is  something  that  is,  varying with time.  It  depends on

several things, it depends on the scattering environment, it depends on the location of the

base station location of the user. In general,  it  depends on the environment  and it  is

changing. So, this knowledge of this channel vector has to be acquired or in other words

this channel vector h bar which we have been assuming implicitly to be known has to be

estimated initially.

So,  that  is  the  important  aspects.  So,  this  Channel  State  Information  CSI  which  is,

broadly termed as CSI has to be estimated and what this means is whenever there is an

estimation process, there is always going to be, Estimation Error ok. So, no estimation

process is hundred percent accurate which means, there is always the there is especially



in practical sonorous. There is always a receive dual Estimation Error that depends again

on various, various settings you can say.

For instance, how high is the signal to noise power ratio, how fast is this average you

can. So, in general there is, Estimation Error all  right there is  error in the,  available

knowledge of the channel state information or in general there is error in the available

estimate of the channel vector. So, you have your channel vector h bar ok. So, your

channel vector is, h bar, but this channel vector is, not known exactly frequently. So,

what is known is this estimate h bar and the channel vector is this estimate plus some you

can, think of this as error.

So, you have this Error in the CSI estimate that is, Error in the estimate of the channel

state information. So, what is known is, this is the estimate or this is also known as the

Nominal, C S I something that is available on the face of it. So, this is Nominal channel

state information or an estimate of the channel state information.  And this is the true

underlying channel which is unknown
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The true channel the True channel vectors are known, but what is known is an estimate

and what we know is in general, this underlying channel the True channel vector h bar is

close to the estimate that is all we know. Now, how close that has to be characterized at?

One of the ways to characterize that is as we have seen again we have seen this before is

to basically look at a region; around the estimate.



So, we say this is your estimate h bar p and this  is the uncertainty region, typically,

modelled as an ellipsoid. So, this is also known as an uncertainty ellipsoid. That is E and

what you say is that the true channel vector lies somewhere in this uncertainty ellipsoid

all right.

So, this is an ellipsoidal, uncertainty region all right. Around the channel estimate h bar e

and  the  true  channel  vector  h  bar  lies  somewhere  in  this  uncertainty  ellipsoid  and

depending on the nature of the uncertainty. The uncertainty is severe than the ellipsoid is

larger the uncertainty is smaller than the ellipsoid shrinks which means, the truth channel

vector is actually very close to the available estimate h bar ok. So, the True channel

vector h bar lies somewhere in the uncertainty ellipsoid.

True channel vector h bar lies in this uncertainty ellipsoid and so, h bar is not known

exactly, but h bar lies in this Uncertainty Ellipsoid. So, how do we model this? So, we

model this as follows.
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The true channel vector h bar belongs, to this, uncertainty ellipsoid. We know, how to

model this Ellipsoid we have already seen this. So, the ellipsoid with centre h, bar e can

be modelled as h bar e plus some matrix P times u.

Such that, that is this is a set of all h bar e plus matrix P times u such that norm of u bar

is less than or equal to 1. This is the model for your uncertainty ellipsoid. This is the



model for the uncertainty ellipsoid and you can see this is clearly an uncertainty. For

instance, you can write this as this implies, what does this imply? This implies that your

h bar equals h bar e plus P times u bar which implies that, h bar minus h bar e equals P

times u bar which implies that, P inverse h bar, minus, h bar e equals u bar. Now, note

that norm u bar is less than or equal to 1.
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Which implies, norm P inverse, times h bar, minus h bar e, less than or equal to 1. Which

implies that, norm square of P inverse h bar minus h bar is square norm square less than

equal to norm square l vector is nothing, but the vector transpose times it itself.
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Which implies that, h bar, minus, h bar e transpose P inverse transpose P minus transpose

P inverse into h bar minus h bar e less than or equal to 1; which implies that now you can

see that now, P minus. So, this you can think of this as P P transpose inverse.

So, I can write this as, h bar minus h bar e transpose some matrix A inverse h bar minus h

bar e less than equal to 1where this matrix A equals P P transpose and A is therefore, you

can see this is a, P S D metric. In fact, is a P D matrix, positive, definite matrix because

you are looking at A inverse.

And, therefore, this you can clearly see therefore, this is the ellipsoid. In fact, this is the

ellipsoid ok; this is the ellipsoid, or h bar or rather the uncertainty ellipsoidFor h bar.

And, that actual vector, h bar lies somewhere in this Ellipsoid. Now, let us go back let us

revisit our original beamforming problem ok.
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So, we have our original beamforming problem is y bar, equals h bar x, plus n bar, this is

your original beamforming problem. Let us say, let us pick it general let us say n bar

contains the noise plus interference N plus I with covariance remember we said, if you

have noise plus interference instead of a white covariance you can characterize it by a

covariance matrix  R expected value of n bar n bar, Hermitian or rather  you can say

expected  value of  n  bar  n  bar  transpose ok,  is  R,  this  is  the  noise plus  interference

covariance.

Now, what we have doing so far is we have assumed h bar to be known exactly and when

we beam forward we assume, we are setting W bar transpose h bar greater than or equal

to 1 and this we said basically ensures, signal gain equals 1 and this is a very convenient

framework all right. So, when you Beam forming bar W bar, you ensure to ensure that

signal gain is constant. You have a constant signal gain while minimizing the noise part

because; we said otherwise the solution is the trivial beam formal that is W bar equals 0.

Therefore, we said W bar transpose h bar equals to 1.

Now, the problem with this approach is that if h bar is not known then, how are you

going to enforce this condition right? So, we do not know h bar. So, it is meaningless to

say  W  bar  transpose  h  bar  equals  1  because  h  bar  the  actual  channel  vector  the

underlying CSI is unknown. So, this is not possible, when h bar is unknown. So, the first



thing that you have to realize is this is only possible when the underlying channel vector

h bar is not ok.

And, therefore, now what do we do? So, now, there is no way to ensure this condition,

but rather, what we do ok, I am sorry this is previous one was W bar transpose h bar

equals to ensures unity gain for the 2 channel vectors. But now, what we do is we modify

this as follows. Now, we modify this as W bar transpose h bar greater than or equal to 1.

For all h bar belongs to the uncertainty ellipsoid.

So,  what  this  says  is  you  take  the  uncertainty  ellipsoid  and  you  look  at  any  h  bar

belonging to that uncertainty ellipsoid.And for any h bar belonging to the uncertainty

ellipsoid you are ensuring a minimum gain of unity all right. So, instead of just fixing the

gain to unity for one particular channel vector h bar you are ensuring that for all these,

channel vectors that belong to the uncertainty ellipsoid h bar the minimum gain is unity.
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So, thereby this ensures minimum gain equals unity. Ensures minimum gain equal to

unity for all channel vectors belonging to the, but all channel vectors belonging to the

uncertainty ellipsoid and therefore, in that sense all right in that sense, it is robust!

Now, you can say this is, robust implies that, this is robot why is this robust remember

what is the definition of robust? Robust something is robust implies that, something is

strong something that cannot be swayed very easily. So, we say when you say a person is



robust; that means, the person is resilient all right, even the person is attacked or the

person is, for instance say, under an attack or something of that. So, the person has the

ability to withstand that all right.

So, in that sense this optimization problem is robust meaning that, even if there is an

uncertainty  in  the  channel  vector  h  bar  which  there  is,  this  formulation  is  able  to

withstand it. Because you are ensuring a minimum gain of unity for not just any singular

term any single value of the channel vector, but for all the channel vectors that belong to

this particular uncertainty ellipsoid.

So, in that sense this robustness criterion makes sure that the designed beamformer is

resilient or it can withstand this challenge of this uncertainty or this how do you put it

this sort of this kind of scenario all right. This kind of an implement the scenario that is

arising because of the estimation error all right.
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So, the robust framework ensures that the beamformer can tolerate uncertainty implies, it

a strong or robust unless, something that was done. Previously if, it does not take the

uncertainty into account this thing can withstand uncertainty; therefore, it is robust. And

therefore, the robust beamforming problem can be formulated as follows. We similarly

minimize the noise plus interference power W bar transpose R W bar



So, again, once again you minimize the noise plus interference power. You minimize the

noise plus interference power, but now the constraint instead of W bar transpose h bar

equals 1. This becomes W bar transpose, this becomes W bar transpose h bar greater than

or equal to 1. For all h bar belongs to the uncertainty ellipsoid.

So, this is basically you are interesting and very interesting and you can say in novel

robust beamforming problem. So, this ensures that you are minimizing the noise plus

interfering interference power while at the same time ensuring a minimum signal gain for

all  channel  vectors  that  belong  to  the  Uncertainty  set.  So,  this  is  your  robust

beamforming problem.

(Refer Slide Time: 20:02)

.

So,  very  interesting  and not  just  interesting  it  has  a  lot  of  practical  applications,  of

course,  all  of  the  beamforming paradigms that  we have  seen.  So,  far  have immense

practical little. But this one especially, has significant practical utility because it takes

into account the practical artefacts, the practical effects that arise in systems such as the

channel estimation error therefore,  this further. So, this further enhances the practical

utility.

So, this has a significantly higher practical utility. Since, it takes into account practical

effects such as the, channel estimation error and therefore, it is robust and indeed it has

significant practical utility and of course, as you can have already it must have noticed

the problem. Now, formulating a problem is one thing, but then we also have to solve the



problem to derive the optimal beam form also. So, in that sense, the problem has also

become,  significantly more complicated than that  is  naturally  when you try to  build,

increased capability in something that the paradigm becomes more complex.

So,  in  that  sense  is  robust  forming  problem  is  more  involved  than  the  previous

beamforming paradigms that you. So, we are slowly building up the complexity. The first

we  have  seen  beamforming.  Beamforming  with  the  interference,  zero  forcing

beamforming  and  now  robust  beamform  it  is  indeed.  In  certain  sense  you  can  say

encompasses, all these paradigms and generalizes to a scenario where this vector h bar is

not  known precisely  and this  is  significantly  more complex we are going to  see the

solution to this in the subsequent modules.

Thank you very much.


