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Lecture – 37
Practical Application: Zero-Forcing (ZF) Beamforming with Interfering User

Hello.  Welcome to  another  module  in  this  massive  open online  course.  So,  you are

looking  at  canary  optimization  and  practical  applications  of  various  optimization

problems in the context of  Beamforming, alright. We have looked at different kinds of

beam forming, the beam forming, the original beam forming problem, we have also seen

beam forming with interference. In this module let us look at yet another kind of beam

forming; that is, beam which is known as Zero-Forcing beam for me ok.

(Refer Slide Time: 00:43)

So, what we want to look at is a different kind of beam forming which is termed as zero-

forcing,  beamforming, you can also call  this  as  ZF-  ZF for  zero-forcing.  Now what

happens in zero-forcing  beamforming? In zero-forcing  beamforming the interference is

null, interference is made 0. So, we are forcing interference to 0, that is why is forced is

interference is Forced to 0, that is why this is known as zero-forcing beam following; is

also known as interference nulling.  You can call  this also as nulling the interference,

interference is null, interference Nulling.
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What happens in zero-forcing  beamforming? Well have seen  beamforming where you

have a multiple antenna array, and you have these multiple antennas, and let us see. So,

this is a receiver, and you have the desired user, and you have your interfering user this is

your interfering user.

This is the desired user, and what you do in this is that you again maximize the signal

gain  in  this  direction;  direction  of  the  desired  user.  While  in  the  direction  of  the

interfering user, in the direction of the interfering user, what you do is, you simply place

a null; that is, you make the signal equal to 0 ok. So, equal to 0, or gain equal to 0, you

can say signal gain in the direction of interfering user. Gain equal to 0 in the direction of

the interferences, or you can say the interference is nulled. Therefore, you are nulling the

interference.

This is termed as interference nulling, your nulling the interference by basically ensuring

that the gain in the gain in the direction of the interfering user is 0. This also termed as

interference nulling.  Or this  also in fact,  termed as placing a null  in the direction of

interfere. So, this can also be thought of as placing a null. Already this various no mental

kinds of nomenclature, this is Placing a NULL in direction of interfere; also termed as

Placing a NULL, you are placing a null in the direction of interfere.
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Let us look at the procedure to do this. Let us again go back to a system model that is y

bar equals h bar x plus g bar x i plus n bar this model is similar to the model that you

might remember we had seen before. That is, this model y bar equals h bar x plus g bar x

i plus n bar; where you can see once again.

(Refer Slide Time: 05:51)

This is basically the channel vector of the desired user, the channel of the desired user.

This is the channel of the interfering user. This is the channel of the interfering user ok.



And you place w bar is the beam forming vector and w bar. So, you are performing beam

forming correct similar to what you have done before.

So, we have w bar transpose y bar equals w bar transpose x bar x plus g bar x i plus n

bar; where n bar is the noise this is the additive white Gaussian noise as usual. So, this is

your w bar transpose h bar x, plus w bar transpose g bar into x i, plus again the noise

output that is w bar transpose n bar.
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Now, this is the signal part, and you ensure that signal gain equals 1, the gain in the

direction you can also term this as the gain in the direction of the desired user. So, this

ensures that signal gain this ensures basically your unit is signal gain.

Now here what we do is to null the interference we set this interference term to 0. So,

what we are doing is we are setting is w bar transpose g bar equal to 0. So, this basically

nulls this basically nulls the interference. So, by setting w bar transpose g bar equals 0

what you are ensuring is that, you are placing a null in the direction of the interferer or

basically you are not able to receive or basically you are you are effectively suppressing,

or you are effectively not just suppressing, you are effectively zeroing whatever is the

signal that is received from the interfere. So, that is basically ensured by this condition

that we were transpose g bar equal c.



 And therefore, now your optimization problem the resulting zero-forcing beam former,

optimization problem for the ZF beam former.

(Refer Slide Time: 09:04)

And by the way this is your zero-forcing condition in case you are wondering what is 0

forcing. So, this is basically you are forcing the interference to 0. You are forcing the

interference to 0.

(Refer Slide Time: 09:44)

And therefore, the resulting optimization problem for a zero-forcing beamforming, you

minimize the noise power as usual that is sigma square norm w bar square; which we



said is equivalent to minimizing norm w bar square, because sigma square is constant,

which is basically nothing but w bar transpose w bar. So, you minimize w bar transpose

w bar. Now subject to the constraint, now you have 2 constraints. In fact, previously you

had only one constraint. So, you have w bar transpose h bar equals 1 unit again in the

direction of the signal.

Now, you have another constraint, that is w bar transpose g bar equals 0, this is your ZF

constraint.  This is your ZF constraint:  this  is your objective function,  which is again

convex. This is an affine constraint, this is also an affine constraint, both of them are

linear.  So,  this  is  basically  now your  convex  optimization  problem.  This  is  again  a

convex optimization problem, similar to what the objective is convex constraints are in

fact, affine that linear constraints of convex.

This is a convex, this is a convex optimization problem; however, now you see that you

have  2  constraints,  correct?  Unlike  the  previous  one  where  you  had  only  a  single

constraint, you have to interact in a general optimization problem you can have multiple

constraint, not just one constraint. That was a very I mean previous problems were very

simple rather simple. So now, you have 2 constraint and you can in fact have multiple

constraints. In fact, in this scenario itself you can see that if you have more than one

interfering user. So, if you have let us consider a schematic; where you have more than

one interfering user.

So, you have t x 3 and again you want to place a NULL along the direction of t x 3. So,

depending on the number of interfering users, you can see in this scenario you have

constraints. In fact, if k is the number of interfering users, you have k plus 1 constraint.

One is the signal gain that is unity signal gain, plus k null constraints for the k interfering

users only. So, the number of constraints grows with the number of interfering users.
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And therefore, now this optimization problem; again I can write this as w bar transpose

w bar subject to the constraint. Well, I can write this as w bar transpose h bar is h bar

transpose w bar. So, I can write this as subject to the constraint, h bar transpose w bar

equals 1. And g bar transpose w bar equals 0.

And now I  can  make  this  as  a  matrix,  this  as  a  vector,  I  can  call  this  matrix  as  c

transpose. So, c transpose w bar equals this vector e bar 1; where c is the matrix you can

see this is the matrix which is this matrix. It is first column will be h bar and the second

column will be g bar. So, this is the matrix and e bar is this vector, e 1 bar is this vector

which has one in the first position and 0.
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So I can write  this optimization problem as minimize known w w bar transpose w bar

subject to c transpose w bar equals e bar 1. And this is basically the optimization problem

now for  my zero-forcing  Beam Forning.  This  is  the  optimization  problem for  zero-

forcing Beam Forning.

In fact, this is known as a quadratic program. See what you have here is; you have a

quadratic constraint, a quadratic objective function. So, you have you have a quadratic

objective function, quadratic objective function. So, this quadratic objective function and

linear constraints, affine constraints or rather we put these things as affine constraint.
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And therefore, this is basically termed as a quadratic program. This is therefore, termed

as a quadratic program, this kind of this type of an optimization problem is termed as a

quadratic program. And now, what we want to do is; we want to solve this quadratic

program to obtain the zero-forcing being former.

So, I form the Lagrangian which is f of w bar from our lambda bar, we will see that it

will be function of a vector lambda bar; which is w bar transpose w bar plus, now you

see there are 2 constraints. So, I will need one Lagrnage multiplier for each constraint.

So, lambda 1 lambda 2 into c transpose; that is basically your h bar transpose g bar

transpose times w bar minus e bar a 1 bar ok. So, this is your first constraint,  h bar

transpose w bar minus 1 g bar transpose w bar equals 0. So, you have 2 constraints so, 2

Lagrnage multipliers, one for each constraint.
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So, you have to recognize multipliers equals 1 for each constraint. And therefore, this is

the rho vector lambda bar transpose. I can write this as lambda bar transpose; where

lambda bar is a vector containing the 2 Lagrnage multipliers, that is your lambda 1 and

lambda 2.

And therefore, this will be w bar transpose w bar plus lambda bar transpose times this is

your c transpose, this is your e bar 1. So, this is your c transpose w bar minus e bar 1 plus

equals which is equal to w bar transpose w bar plus lambda bar transpose c transpose w

bar minus lambda bar transpose e bar one that is your Lagrangian.
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This is your Lagrangian function. Now we are going to differentiate this, right compute

the  gradient  of  this  Lagrangian  function  with respect  to  v bar  differentiate  this  with

respect to v bar, I am sorry w bar. So, I compute derivative of w bar the transpose w bar

with respect to w bar that is twice w bar. You can also think of this as w bar transpose w

bar  is  w  bar  transpose,  identity  times  w  bar;  where  the  derivative  is  so,  if  you

differentiate this with respect to w bar, you get twice identity into w 1 which is nothing

but twice of w bar.

So derivative of w transpose w bar is twice w bar. And in any case you can see w bar

transpose w bar is w 1 square plus w 2 square. So, on up to w l square if you differentiate

it with respect to each w I you have 2 w i. So, that is nothing but the vector 2 w bar. And

plus lambda bar so, this is of the form lambda bar c transpose. So, this is of the form

your c bar transpose w bar where c bar equals c into lambda bar. So, the derivative is

simply c bar c bar transpose w bar the derivative with respect to w bar is c bar. So, this is

c lambda bar, derivative of lambda bar transpose e bar w bar with respect to w bar is 0.

So, simply that is 0 so, minus 0 and this we set it equal to 0 ok, the gradient is being set

equal to 0 like for any optimization problem.
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Right, you do for any optimization problem to find the extrema. And this implies now,

therefore, what you have now this implies that twice w bar equals c times minus c times.

Now here note that you cannot interchange the c and lambda bar, because previously

lambda was a scalar. So, you can simply bring it out, but here lambda bar is a vector. So,

you have to write it as c times lambda bar. And therefore, this implies that w bar the

optimal vector w bar equals minus c minus half c lambda.

So this is basically the optimal vector w bar that is that expression for the 0. And again to

find  lambda  bar  use  the  constraint.  What  is  our  constraint?  Well,  our  constraint  is

remember c bar c transpose w bar equals e bar 1. So, our constraint is c transpose w bar

equals e bar 1, this implies c transpose no substitute for w bar minus half c lambda bar

equals e bar 1 which implies minus half c transpose c lambda bar equals e bar 1.
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Because we only  need minus lambda bar over 2 this implies minus lambda bar over 2

equals c transpose c inverse e bar 1. That is the expression for your this is the expression

for your, this is the expression for the luggage bottom lamp. In fact, it is an expression

for lambda bar divided by. Now substitute this in the expression in if you call this one

substitute  this  in  one.  You have  w star  now the  optimal  zero-forcing  beam forming

vector. You can write this as what is this?

This is basically you can take this factor of minus half inside. So, this will be I think it is

just the c into r divided by 2 which is equal to minus lambda bar divided by 2 is this

expression. So, this is simply c c transpose c inverse e bar 1. So, that is your optimal

zero-forcing ok. So, this is the zero-forcing beam former which basically places a null in

the direction of interfere. In the sense, I had completely blocks completely blocks the

interference  from  the  interfering  user  all  right.  Or  it  0’s  the  interference  from  the

interfering users.

And in  fact,  this  also  on  the  one  of  the;  it  is  also  a  very popular  technique  that  is

employed in practical wireless communication systems, especially in the presence of a

large number of interfering users. As I already told you before, you can also use this in a

cognitive radio scenario very have a secondary user there is an ongoing the ongoing

primary user transmission. So, you can block at the second user receiver can block this

interference caused by the primary transmitter by using zero-forcing wave forming.



So, because of it is low complexity also it tends to be one of the popular beam forming

techniques, along with the interference the beam forming in the presence of interference

that we have seen trees that is also termed as a cap on beam former alright. So, the zero-

forcing beam former is also one of the popular modes of being forming that is employed

in  practical  scenarios,  alright.  And  this  gives  you  a  neat  procedure  to  derive  the

expression for the zero-forcing beam, alright. 

So, we will stop here and continue in the subsequent (Refer Time: 25:11).

Thank you very much.


