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Lecture – 03
Positive Semidefinite (PSD) and Positive Definite (PD) Matrices and their

Properties

Hello, welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at the mathematical preliminaries for optimization all right. And we have looked

at  the  Eigenvectors  and  Eigen  values  and  this  we  will  start  looking  at  a  different,

different type of matrices known as positive semi definite and positive definite matrices.
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So, we are going to look at the properties of and definition of positive semi definite and

as well as positive definite, positive semi definite and positive definite matrices. And this

is often abbreviate, abbreviated as PSD matrix and this is often abbreviated as a PD,

positive definite matrix. A matrix can be positive semi definite matrices that is there can

be positive semi definite matrices and positive definite matrices. And of course, both of

these  are  also  defined,  once  again  only  for  square  matrices  all right. Similar to  the

concept of Eigen values and Eigenvectors, these are defined for square matrices ok.
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So, also defined only for square ok; now, if now, matrix A consider a matrix A; consider

as square matrix A. Now, if for the real case, if x bar transpose A x bar greater than or

equal to 0 for all x bar then A is a positive semi definite matrix ok. So, x bar transpose A

x bar is greater than or equal to 0. Now, if x bar transpose A x bar is strictly greater than

0 for all x bar, then  A is a positive definite matrix. So, this positive semi definite and

positive definite matrix, if x bar transpose A x bar is greater than or equal to 0 right, for

all x bar, all vectors x bar then it is positive semi definite, if it is strictly greater than 0

then it is positive definite.

Now, these are for real vectors and real matrices, now, for complex vectors and matrices.

Now, this definition is for.
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Now for complex, for complex vectors or matrices as we have seen before; we have to

replace the transpose by the Hermitian. So, x bar Hermitian A x bar greater than or equal

to 0, for all x bar implies positive semi definite and further x bar Hermitian, x bar strictly

greater than 0 for all x bar implies the positive definite matrix. What this definition is for

complex matrices, complex matrices and vectors.

(Refer Slide Time: 04:59)



Let us take a simple example to understand this consider a square matrix consider, a

square matrix A equals 2 6 comma 18. Let us consider the square matrix 2 cross 2 square

matrix 2 6 6 18.

Now, let us look at x bar transpose, A x bar. This is a 2 cross 2 matrix. So, the vector x

bar will be two dimensional x 1 x 2 times 2 6 6 18 into x 1 x 2 and this is equal to you

can see this  will  be equal  to well,  this  will  be equal  to twice x 1 square,  when you

multiply this out plus 18 x 2 square plus 12 times x 1 x 2. And this will be equal to you

can  easily  check twice  x  1  plus  3  times  x  2  square,  which  is  a  perfect  square  and

therefore, this is always greater than or equal to 0.
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Hence, but and hence now, you can see this also, this not just this is not strictly greater

than 0, because 2 x 1 plus 3 x 2 equal to 0, if x 1 equals minus 3 over 2 x 2 all right. So,

this is only greater than or equal to 0, if 2 x 1 plus 3 equal to equal 0 then this will be 0

that is x bar transpose, x bar will be 0 otherwise, it is greater than.

So, therefore, in general it is greater than equal to 0. Hence, the matrix A is positive semi

definite. Hence, this matrix hence, A is positive semi definite since x bar transpose A x

bar is greater than or equal to 0 is greater than or equal to 0 for all x bar. Let us look at

some, let us look at a property of this positive semi definite.
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Let us look at a very interesting property, let us look at an interesting property of this.

Now, consider the Eigen values since, these are square matrices Eigen values. So, the

Eigen values if A is positive definite then the Eigen values lambda i of A denoting this by

lambda i bracket A. These are strictly greater than all the Eigen values have to be greater

than 0. On the other hand, if A is PSD then the Eigen values are greater than equal to 0

that is some of the Eigen values can be 0 and rest of them are greater than 0 ok.

So, this is an interesting point for a PD matrix the Eigen values are strictly greater than 0

for a PSD matrix the Eigen values are greater than or equal to 0 again let us check verify

this property on the previous example. So, let us look at A.
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Again look at us look at the example A equals our matrix 2 6 6 18. Now, to calculate the

Eigen values, one has to consider the characteristic polynomial determinant of a minus

lambda i, which is the determinant of 2 minus lambda 6 6 18 minus lambda and this can

be simplified.  The determinant  can be simplified as 2 minus lambda times 18 minus

lambda minus 36 equal to 0 and this is the characteristic equation ok. Remember the

characteristic polynomial and the characteristic equation for the matrix, this implies.
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Now if you simplify this, this implies 36 minus 20 lambda plus lambda square minus 36

equal  to  0.  This  implies  lambda  square minus 20 lambda equal  to  0,  which  implies

lambda square, which implies lambda square equals 20 lambda, which implies lambda

equals 0 comma 20. These are the two Eigen values ok.

So, you can see. In fact, what you can see is very interestingly, that one of the Eigen

values is in fact 0, correct. If you call this lambda 1, lambda 1 is in fact, 0 1 of the Eigen

values is 0, this implies.
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In fact,  you can also see and we also checked that  the matrix  is  PSD, positive semi

definite. Now, for a symmetric matrix, if the Eigen values are greater than equal to 0

matrix, one can also conclude that, that is not only the forward property. But also the

reverse that is right, that if for a symmetry that is for a symmetric matrix. If the Eigen

values are greater than equal to 0, the matrix is positive semi definite, if the Eigen values

are greater than 0 the matrix is positive definite for symmetric matrix A.

So, the interesting property for a symmetric matrix A, if  Eigen values lambda i of a

greater than equal to 0 then A is positive semi, if lambda i greater than equal to 0 then A

is positive semi definite, if lambda i A is greater than 0 then A is a positive, then A is a

positive definite matrix.



Let us now, continue looking at another important concept that is of the Gaussian random

variable, which we are also going to use frequently in our framework of optimization.
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So, we want to look at the basic concepts of Gaussian Random Variables,  which are

central to our discussion on optimization. So, what is a Gaussian random variable? Well

X is a Gaussian Random Variable, X is Gaussian Random Variable, variable with mean

equal to mu and variance equal to sigma square that is, it is denoted by this notation

Gaussian.

This is also known as a Normal Random Variable is denoted by this notation N mean

script N mean mu variance sigma square ok.
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And the probability  density  function of this  every random variable  has  a  probability

density function that is given as 1 over square root of 2 pi sigma square for the Gaussian

Random Variable e raised to minus x minus mu whole square by 2 sigma square. What is

this?  This  is  basically  your  PD F or  the  Probability  Density  Function.  PD F of  the

Gaussian Random Variable with mean mu and variance equal to sigma square ok. So,

this is the probability density function and you might also recall that.
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Many of you might be familiar that the shape of this probability density function is given

by this bell shaped curve with the peak occurring, that is the peak of this occurs at x

equal to Mu. That is the mean and the spread of this is controlled by the variance equal to

sigma square controls the; so, the peak occurs at the mean.

So, the peak shifts in the Gaussian probability density function and it is symmetric about

the mean. It is a bell shaped curve and the spread of this is controlled by the variance.

For  instance,  of  the  variance  decreases  then  the  spread  decreases  the  Gaussian

probability density function becomes more and more, peak. Here, that is more and more

concentrated around the mean ok. So, as the variance decreases, it becomes more and

more concentrated around the mean.
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As the variance decreases, it becomes concentrated around the mean and now, one can

define a new random variable X tilde by subtracting the mean and dividing by the square

root of the variance or sigma, which is the standard deviation ok. So, now, you can see

this X tilde is also which is derived by subtracting the mean and dividing by the standard

deviation  sigma.  Now, this  X  tilde  is  also  a  Gaussian  R  V and  there  is  something

interesting about X tilde, the mean of X tilde will be 0 that is expected value of is 0.

And the variance that is expected value of X tilde minus mu or X tilde square in this case

as mean is 0 is equal to 1. So, mean equal to 0 and X tilde is Gaussian R V with mean 0



and variance unity ok. So, this is a Gaussian R V with mean equal to 0 and variance

equal to 1, such a Gaussian R V with mean equal to 0 variance equal to 1.
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This is termed as the standard normal random variable, standard normal the system, as

the  standard  normal  random  variable  ok.  And  now, we  define  the  standard  normal

random variable is used to define what is known as the Q function.
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So, this now the probability density function of the standard normal random variable that

is also simple to design, because it has mean mu equal to 0 and variance 1. So, you



substitute mu equal to 0 and sigma equal to 1, in the earlier expression for the probability

density function of the Gaussian Random Variable and what you get is the PD F of this

Standard Gaussian Random Variable given as 1 over square root of 2 pi.

So, sigma square equal to 1 1 over square root of 2 pi e raised to minus X tilde square,

remember mu is 0. So, X tilde minus mu is simply X tilde, X tilde squared divided by 2

again. Once again sigma square equal to 1, this is the PD F of the Standard Normal and

one can define the Q function of the PD F of the Standard Normal, that is the probability

that this Standard Normal Gaussian Random Variable X tilde is greater than or equal to a

quantity x naught is denoted by Q of x naught. This is also termed as a Q function or the

Gaussian Q function.
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This is the probability that the standard normal variable X tilde is greater than or equal to

x naught, which is given by the integral X tilde x x naught to infinity. The integral of the

probability density function of the Standard Normal Variable 1 or square root of 2 pi e

raised to minus x tilde square divided by 2 times d of x tilde that is the probability that

this, this also equal to the probability that X tilde belongs to the interval x naught comma

infinity.

That is basically, what we are asking is the question, what is the probability that X tilde

the Standard Normal Random variable takes a value greater than or equal to x naught or

basically, that  it  lies  in  the  interval  x  naught  to  infinity  and  that  is  remember  the



probability that the random variable lies in a particular interval is given by the integral of

the probability density function of the random variable over that interval. So therefore, it

is given by integral x naught. This probability is given by the integral x naught to infinity

1 or square root of 2 pi e raised to minus X tilde square divided by 2 d x tilde and what it

denotes as?
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I have already told you it denotes the probability that this Gaussian Random variable

with mean 0 and variance equal to 1 is greater than this quantity x naught. So, it denotes

the probability that or the area under the PD F greater than or equal to x naught. This is

also  known as  the  tail  probability  of  the  Standard  Normal  Random Variable  is  also

known as the tail probability of the Standard Normal.

There  is  probability  under  the tail  starting from x naught,  this  is  also known as the

Complementary Cumulative Density Function. The Cumulative Density Function gives

the probability that the random variable takes values less than x naught the complement

of that or 1 minus the C D F gives the probability, that it is greater than or equal to x

naught. This is therefore, known as the Complementary Cumulative, also known as the

Complementary  Cumulative  Distribution  Function  or  the  C  C  D  F  of  the  Standard

Normal Random Variable.

Now, let  us  come  to  a  multi  normal  Multivariate Gaussian Random Variable or  a

Gaussian Random Vector. A Gaussian Random Vector with multiple components, each



of them individually Gaussian and all of them being jointly Gaussian ok. So, we will talk

about a Multivariate, Multivariate Gaussian R V.

(Refer Slide Time: 25:01)

Now, a Multivariate Gaussian R V is given by x bar equals x 1 x 2 up to xn and this is a

Gaussian random vector x bar. This is a Gaussian random vector x bar and x bar equals x

1  x  2  x  n.  So,  this  has  n  components  we  will  denote  the  mean  now  each  of  the

components is going to have a mean.
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So, the mean is going to have a b a vector that is expected x bar equals the expected

value of each of the components. So, this is going to be an n dimensional vector, which

we will denote by this. Let the mean of the various components be mu 1 mu 2 up to mu

n. So, this is basically your mean vector. So, the mean is going to be a vector.

So,  you  can  call  this  also  as  the  mean  vector  of  the  Multivariate  Gaussian  random

variable and further instead of the variance. We will have the covariance matrix, which

looks at the variance of each component and also the cross. There also the covariance

correct, the cross correlation corresponding to each of the elements of this random vector

and the covariance matrix is defined as follows.
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That  is  R equals  expected  value  of  x  bar  minus  mu bar  into  x bar  minus  M u bar

transpose and this is remember, this is termed as the covariance matrix. This is termed as

a covariance matrix and this is an n cross n matrix,  the system there is a covariance

matrix and this is an n cross n matrix.
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The probability density function of the Multivariate Gaussian Random Variable into and

you can also denote this as n again. So, the  Multivariate Gaussian Random Variable

you can denote it as Gaussian Random Variable with mean vector mu bar, and covariance

matrix R, and the probability density function is given as 1 over square root 2 pi raised to

the power n raised to the power of n the determinant of the covariance matrix R times e

raised to minus half x bar minus mu bar transpose R inverse x bar minus mu bar. And

this  is  basically  your  PD  of  the  Multivariate  Gaussian  Random  Vector  PD  F  of

Multivariate  Gaussian  Vector  with  mean  equals  mu  bar  and  variance  equal  to  a

covariance sorry, covariance matrix and covariance matrix equals R, all right and that is

the expression for the PD F of the Multivariate Gaussian Random Vector.

Let us now, look at an example to understand this and let us look at an interesting special

case  of  this  Ultivariate  Gaussian  Random  Vector,  which  is  when  the  different

components of this Gaussian Random Vector are independent.
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So, consider, consider a Multivariate Gaussian with expected x bar equals mu bar equals

the 0 vector and expected value of x i into x j. The different components is equal to 0 if i

not equal to j and sigma square if i equal to j alright. So, the, what we are seeing is the

cross correlation expected value of x i x j, if i naught equal to j is 0 all right and all the

variances of each of variance of each element is sigma square. So, these are basically

what you can see is; basically these are known as uncorrelated random variables, because

the correlation is 0.

So,  these  are  basically  uncorrelated,  uncorrelated  Gaussian  Random Variables  is  the

cross  correlation,  cross  covariance  is  0.  These  are  uncorrelated  Gaussian  Random

Variables ok.



(Refer Slide Time: 31:50)

And now, if you compute the covariance of this, that will be given as of the covariance

matrix of this, that will be given as well. We already seen that is x bar minus mu bar into

x bar minus mu bar transpose.

Now, mu bar is 0. So, this will simply be expected value of x bar into x bar transpose

which is now, let me write it in terms of it is vector.
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This is going to be expected value of x bar which is the vector x 1 x 2 x n into the

transpose x 1, which is the row vector remember transpose of a column vector is a row



vector and now, once you compute this what you will observe is if you compute this you

will have entry such as x 1 square, the off diagonal entries will be x 1 x 2 x 2 x 1 x 2

square and so on.

And now, if you look at  this matrix  expected value of each element on the diagonal

expected  value of x 1 square x 2 square x 3 square so on.  Sigma square,  when the

expected values of the off diagonal entries x 1 x 2 x 2 x 1 and so on are 0, because these

we  have  considered  the  random  variables  to  be  uncorrelated.  And  therefore,  the

covariance matrix basically, you can see reduces to sigma square.
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All  the  diagonal  elements  are  sigma  square  the  off  diagonal  elements  are  0.  And

therefore, this is also sigma square times identity.
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And  now, once  you  compute;  so,  our  covariance  matrix  equals  sigma  square  times

identity, this is remember, this is our covariance matrix. And therefore, the multivariate

Gaussian Probability Density Function is given as 1 over square root. Now, if you look at

the determinant of this determinant of R is sigma square times identity determinant of R

is sigma square raise to the power of n, which is sigma to the power of 2 n and therefore,

the probability density function is 1 over.

Let me just write it separately is 1 over square root of 2 pi raised to the power of n sigma

raised to the power of 2 n that is the determinant times e raised to minus half x bar minus

mu bar that is x bar transpose R inverse R sigma square identity R inverse is identity

divided by sigma square times x bar.
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Which is now, you can simplify this as 1 over 2 pi sigma square raise to the power of n

by 2 times e raised to minus half or 1 over 2 sigma square x bar transpose x bar transpose

identity  x bar is  x bar transpose x bar, but  recall  x bar transpose x bar recall  x bar

transpose x bar equals norm of x bar square, which is also equal to x 1 square plus x 2

square plus so on, up to x n square for a real vector x bar. And therefore, this is also equal

to 1 over 2 pi sigma square to the power n by 2 times e raised to minus 1 over 2 sigma

square norm x bar square.
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And this is also equal to 1 over 2 pi sigma square n by 2 e raise to minus 1 over 2 sigma

square summation 1 equal to i to n x i square and interestingly.

Now, you can also write this as the product i equal to 1 to n 2 pi sigma square or 1 over

you can also write it as 1 over square root of 2 pi sigma square e raised to minus x i

square divided by 2 sigma square. And therefore, now, this is the product symbol similar

to summation.
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This is your product symbol, product i equal to 1 to n. And now, you see these are the

individual  PD F's.  These  are  the  individual  Gaussian  PD F's  of  the  various  random

variables X i with mean equal to 0 and variance equal to sigma square and therefore,

what  you  are  seeing  is  that  when  these  Gaussian,  when  this  component  Gaussian

Random Variables are uncorrelated the joint Gaussian the Multivariate Gaussian PD F

equals the product of the individual PD F's.

So, which means that these PD F's, these random variables are not only uncorrelated, but

they are also independent and this is a unique property of the Gaussian Random Variable,

if two Gaussian Random variables are uncorrelated, they are also independent. This is

not true for any general random variable. It is an interesting property that is applicable

only for the Gaussian Random Variables.
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So, this implies this implies that the Gaussian R V's are also independent ok. So, for a

Gaussian R V uncorrelated implies that they are independent. However, this is not true

for any general random variable and this is the important property, not true for, but the

other way round is always true right, for any random variable if they are independent. If

two random variables are independent then they are going to be uncorrelated.

However it if in general it is only for a  Gaussian Random Variable, it is true that if

they are uncorrelated, they are also independent. This is not true for any general random

variable  all  right.  So,  this  small  example  illustrates  this  interesting  property  of  the

Multivariate Gaussian Random, Multivariate Gaussian Random vector alright.

So, we will stop here and continue with other aspects in the subsequent modules.

Thank you.


