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Lecture - 27
Jensen's Inequality and Practical Application: BER calculation in Wired and 

Wireless Scenario

Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at convex functions and particular convex functions of a vector, variable vector,

correct. And out at the test for convex, if there is a function which convex function, the

test of convexity for a function of a vector, alright. So, let us change tracks a little bit and

look at  something known as Jensen’s inequality which has significant  applications in

various areas, ok.

(Refer Slide Time: 00:49)

So, what we want to look at in this module is Jensen’s inequality for you can say, convex

as well as which is a handy tool that arises in several scenarios. In fact, we will try to

justify this by looking at a practical application. So, this is a Jensen’s inequality and the

Jensen’s inequality is very interesting and that is as follows.



(Refer Slide Time: 01:17)

That is, remember if you go back and look at the definition of the convex function, it is

this bowl shaped function we said and if you look at 2 points x 1 and x 2 and you take

any linear combination, that is, let us make this as vectors theta 1 x 1 bar plus theta 2 x 2

bar and this is the value of the function at the linear combination and this is the value of

the function that is this is remember, F of theta 1 x 1 bar plus theta 2 x 2 bar. And this is

theta 1 times F of x 1 bar plus theta 2 times F of x 2 bar.

(Refer Slide Time: 02:18)



Where we can say theta 1, you can set it as theta. Remember, theta 2 equals 1 minus theta

or you can simply say theta 1 comma theta 2 greater than equal to 0 and theta 1 and theta

2 satisfy this condition that theta 1 plus theta 2 equals 1. So, this is a convex combination

of 2 points, theta 1 times x 1 bar plus theta 2 times x 2 bar where, theta 1 theta 1 theta 2

are  2  scalar  called  2  numbers  which  are  greater  than  or  equal  to  0  which  are  non-

negative.

And sum theta 1 plus theta 2 equals 1 ok, which automatically implies is a non negative

and sum to 1 automatically implies that both theta 1 and theta 2 lie in the interval 0 to 1

ok. Further, now you can see that therefore, the inequality for the basic inequality is that

F of theta 1 x 1 theta 1 x 1 bar plus theta 2 x 2 bar is less than or equal to theta 1 F of less

than or equal to theta 1 F of x 1 bar theta 2 F of x 2 bar this is the inequality for a convex

function, for convex function F ok, F of x bar.

(Refer Slide Time: 03:50)

Now, you can see that, now look at look go back and look at this quantity theta 1 plus

theta 2 greater than or equal to 0 and theta 1 plus theta 2 equals 1. Remember, this should

remind you of something, these remind you of probabilities. Reason being, you have 2

quantities theta 1 plus theta 2 which are non-negative greater than equal to 0 and the sum

to 1.

So,  this  remind  you  of  the  it  should  remind  you  of  a  probability  distribution  or  a

probability  mass  function  in  this  case  which  you  can  say  that,  you  can  consider  a



distribution probability x equals x 1 bar equals theta 1 and the probability x equals x 2

bar equals theta 1, that is probability random variable x takes x 1 bar is x 1 bar with

probability theta 1 and it is x 2 bar with probability theta 2. Some of the probabilities are

greater than equal to 0 and some of the probabilities as well.

(Refer Slide Time: 05:01)

And now, therefore, if you look at this quantity, now, it is interesting if you look at this

quantity, theta 1 times x 1 bar plus theta 2 times x 2 bar, this is equal to, what is this

equal to? Well, this is if you look at this is x 1 bar or this is probability, X equals x 1 bar

times theta. I am sorry times theta 1 is probability X equal to x 1 bar times x 1 bar plus

probability X equals x 2 bar times x 2 bar, ok. This probability X equal to x 1 bar is theta

1 probability X equal to x 2, once theta that is what we said about.

And therefore, this is nothing but if you can look at this, this is the expected value of the

random variable X. Because, remember what is the expected value? Expected value is

nothing  but  you  take  each  poise  possible  value,  multiply  it  by  the  corresponding

probability and sum, right. That is expected value. This is nothing but summation over i

probability X equal to x bar i times x bar i. This is your definition for the expected value

of X ok.

So, this is the definition for the expected value of X. Further, if you look at this quantity

and therefore, if you look at this quantity that is F of theta 1 x 1 bar plus theta 2 x 2 bar,

you can now write that as F of well that is F of simply expected value of X ok. This



random variable x because, remember we have shown that theta 1 x 1 bar plus theta 2 x 2

bar, that is basically equal to this F of that is the expected value of X.

(Refer Slide Time: 07:10)

Now, on the other hand, if you look at this quantity, that is theta 1 F of x 1 bar plus theta

2 F of x 2 bar, well this is equal to again, I can write this similarly, F of x 1 bar times the

probability that X equals x 1 bar which is theta 1 plus F of x 2 bar times the probability

that X equals x 2 bar. And this is equal to the expected value of F of x bar [noise,] this is

equal to the expected value of F of x bar.

And, therefore, what we have now? If you look at for a convex function right; so, what

we have? Just shown is that theta 1 F of x 1 bar plus theta 2 of F of x 2 bar, that is the

convex combinations  of  the  2 points,  that  is  a  point  on  the  cord is  nothing but  the

expected value of F of x bar. And for a convex function, we know for a convex function

we have F of theta 1 x 1 bar plus theta 2 x 2 bar this is less than or equal to theta 1 F of x

1 bar plus theta 2 F of x 2 bar well.
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What is this we have seen is expected value of X and this is expected value of F of X.

Therefore, we can represent the same thing as F of expected value of X is less than or

equal  to the expected value of F of X and this  is  basically  Jensen’s inequality  for a

concave function. Convex function, I am sorry this is basically your Jensen’s inequality

so, very important and a very handy tool as we just will see in a practical application.

This  is  Jensen’s  inequality  and  it  is  frequently  used  in  signal  processing  and

communications.

Especially,  if  you look  at  information  theory, there  are  several  instances  where  this

Jensen’s inequality is fairly handy to prove various results, all right. It states that for a

convex function F of the function of an expected value of a random variable is less than

expected value of the function of that random variable. 
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So, this is again F of expected value of X less than or equal to expected value of F of X

ok. For concave or convex and for concave, it is the other way. So, this is for a convex

function. For concave, will naturally have the reverse of this is F of expected value of

because the cord lies below the curve. So, F of expected value of X is greater than the

expected value of F of X. And this is basically for you concave function and this is for

your concave function. 

So, these are basically you can think of this as basically Jensen’s inequality for a convex

function and Jensen’s inequality for a concave function ok, all right and. So, let us know

and you can generalize this too. Well, we have simply considered random variable that

takes 2 values, you can generalize it to you can generalize this as follows.
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So, you can consider theta 1 theta 2 theta n as the probabilities and x 1 bar x 2 bar, so on.

X 1 bar are the various valuables of the random variable. Then, you have again F of

expected value of X equals F of summation i theta i x i bar i equals 1 to n is less than or

equal to F of or is less than equal to expected value of again for a convex function ok.

Expected value of F of X which is basically summation i equals 1 to n theta i x bar i ok,

all right.

So, this is the Jensen’s inequality. In fact, it holds even for a continuous random variable

X. In fact, that is what makes this very interesting and very powerful inequality all right.

And, in fact, that is what we are going to see shortly in a practical application in the

context of a communication system, alright. So, what we want to see now is, we want to

see a practical application of this to demonstrate the applicability.
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So, you want to see a practical application ok. And therefore, consider the channel y

equals well consider a communication and this practical application is in the context of

the BER what is termed as the bit error rate. I think all of you are familiar with this or

most of you are familiar, those who work or those who are familiar with the properties of

a communication system or the performance analysis of communication systems, this is

basically a bit error rate which also is the probability. That is, it denotes the probability

with which a bit is received in error over a communication channel, all right.

(Refer Slide Time: 14:50)



So, you have consider a very simple channel which we y is the received symbol x is the

transmitted symbol and n is the noise correct. So, y this is your received symbol, that is

the channel output. This is your transmitted symbol and this is your noise ok, which is

typically assumed to be white Gaussian, correct. This is white Gaussian with mean 0 and

variance sigma square x can be a symbol typically take this as plus or minus square root

of P that is BPSK symbol.

Power  BPSK  stands  for  binary  phase  shift  keying  power  is  P. The  noise  is  white

Gaussian and it is additive in nature, correct. Therefore, this is termed as an additive

white Gaussian noise channel. Therefore, this is termed as an additive white Gaussian

noise channel and since this is an additive white Gaussian noise channel.

(Refer Slide Time: 16:36)

If you are transmitting BPSK symbols power square root of P, then we have the SNR is

nothing but  the  symbol  power  signal  power  divided by noise power. That  is,  sigma

square, all right. And we can denote this by gamma. And the interesting thing about this

is, if you look at the bit error rate of an additive white BPSK of communication of digital

community BPSK or transmit the transmission of BPSK modulated digital symbols, over

an additive white Gaussian channel that is given by the well-known expression, that is

the bit error rate is given as Q of square root of SNR, that is equal to Q of gamma Q of

square root of this is the bit error rate of BPSK over AWGN.



And now, however so now, this model additive white Gaussian noise model is generally

associated with a conventional digital communication system in which they, in which

there is a wire medium between the transmitter and the receiver. This is also known as a

wired channel, all right. A wire based channel such as the twisted copper pair or a coaxial

cable and so on it or your conventional telephone where there is a wire that connects the

telephone to the local exchange and so on, all right.

So, this is a model for a conventional communication system or a wire line what we call

a  conventional  or  basically  or  this  is  your  conventional  or  basically  your  wire  line

system.  Now, on the other  hand,  what  happens in  if  you look at  a  wireless  system,

something interesting happens in a wireless system. In a wireless system, you have a

base station which is transmitting. This is your base station which is transmitting to let us

say, a mobile in the cell, then in addition to this signal which is you can call this as a

direct path.

(Refer Slide Time: 19:14)

They are also going to be several reflections or what are also known as scattered paths.

So, these are also known as the scatters such as large buildings. So, these gives ray give

rise to this non-line of sights the NLOS non line of sight scatter. So, there is a line of

sight. Now, what happens? When these multiple paths the signals from multiple paths,

they superimpose, correct.



So, when these signals superimpose, so, multiple signals from the multiple paths is also

known as a multipath  environment.  Multiple  paths superimpose implies  this  leads  to

interference, this leads to interference, correct and that is the problem, right. And once

you have interference, the signal can be now interference may not be only destructive;

interference can also be constructive, alright.

But, the moment you have seen interference, there is uncertainty in the received signal

level, all right. The signal level can dip if the interference is destructive or the signal

level can rise if the interference is constructive. So, in general, the signal the level of the

signal or the power that is the power of the received signal is varying with time, all right.

Unlike a conventional wire line communication system where there is no phenomenon of

multipath reflection.

In a wireless system, because of this multipath reflection phenomenon, the interference

the resulting interference leads to a time varying power for the received signal like this

process is termed as a fade, this process is termed as fading, all right and this channel the

wireless channel is known as a fading channel, ok.

(Refer Slide Time: 21:21)

So, this leads to variation in the received signal which is term as fading implies that the

wireless channel is a fading channel as we have seen in some examples before.



Now, therefore, I cannot simply use the AWGN channel model. For the wireless channel,

I have to use a different model. So, for instance, they are wire line or a conventional

channel model is additive white Gaussian noise that is, your y questions may receive

signal y equals transmitter signal x plus noise. In addition, in a wireless channel, I will

have the presence of a multiplicative factor h, which is a coefficient this term as the

fading channel coefficient. This is term as the fading channel coefficient, ok.
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So, this is termed as a fading channel coefficient and this  is a random variable.  The

important  thing  to  note is,  since  the  received power is  random. This  fading channel

coefficient is a this is a random variable. This implies that, received power is random in

nature  or  received  signal  level  the  received  signal  level  is  random  in  nature.  And

therefore, now you can see the SNR is influenced by this fading channel coefficient.

So,  one can write  the SNR which was previously P over  sigma square will  now be

multiplied  by magnitude  h square.  So,  it  is  P over  sigma square.  Remember, this  is

gamma. So, this is gamma times magnitude h square. So, you can think of this as the

SNR of the wireless channel SNR of wireless channel. This is the SNR of the wireless

channel.

And, therefore, now what we can do is, we can look at the resulting bit error rate of the

bit error rate depending on this SNR of the fading wireless channel and apply Jensen’s

inequality and derive a suitable conclusion, alright. So, this is the practical scenarios in



which  amount  apply  the  Jensen’s  inequality,  alright.  And,  we  will  continue  this

discussion in the subsequent module.

Thank you very much.


