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Lecture – 24
Properties of Convex Functions with examples

Hello welcome to another module in this massive open online course. So, we are looking

at complex functions let us continue our discussion.
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To we want to continue our discussion on convex functions ok. And well now let us look

at it test for convexity let us consider first function of a single variable x y equals F of x,

this is a scalar variable, we are consider will comes to functions of vectors later, so this is

scalar variable. And well this is convex if d square y by d x square equals d square F of x

by d x square that is the second derivative is greater than or equal to 0, and remember

this is for a function of a scalar there is a function of a of a one dimensional variable x of

a single dimensional variable single variable x all right.

So, the second derivative is greater than or equal to 0, then the function is convex ok..
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And this can be understood as follows for instance if you plot a convex function, now

what you will see is if you look at the derivative of the function at different points ok. If

you look at the derivative which is nothing, but the slope derivative is slope.

So, this is your x and this is your F of x. And if you can look the slope of the function

right which is by the slope of the slope of the derivative of the function, which is given

by the slope of the tangent at each point you can see that the deri the slope of the tangent

or the derivative is increasing for a convex function, always slope of tangent equals d F x

by dx is increasing.

Which means we know the test for an increasing function is if its derivative increase that

is the derivative is increasing all right. So, its function is increasing if its derivative is

greater than or equal to 0, all right a function is monotonically increasing with derivative

is greater than equal to 0. 

Now, here the slope is constantly increase monotonically increasing which means that

the derivative of the slope must be greater than or equal to 0.
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Which implies this is the slope is constantly increasing, this implies that the derivative of

the slope d by dx of d x d F x by dx must be greater than or equal to 0 for a convex

functions, and which gives us the result the d square F of x by dx square greater than or

equal to 0. This is basically nothing, but the condition that the slope or the derivative is

constantly increase slope of tangent is monotonically increasing for a convex function, is

monotonically increasing for a convex function.
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 Let us take an example, consider F of x equals e raise to the power of F e raise to the

power of ax for any a can be less than 0 or equal to 0 greater than 0, then d F x by dx

equals d over dx of e raise to ax, this we know the derivative of the exponential this is a e

raise to a. Now, if you take the second derivative F x by dx equals d square or derivative

of the derivative that is d over d x of a e raise to ax, which is a square e raise to ax. 

Now, we know e raise to ax exponential this is always greater than in fact, this is always

greater than 0, a square is greater than equals to 0 implies this is greater than or equal to

a square e raise to ax is greater than or equal to 0 all right. Because the a square is always

non negative all right a square is always greater than equal to 0.
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So, this implies for any value of a d square F x by dx square is greater than equals to 0

implies power e ax equals convex and it is always convex irrespective of a, a can be

either  negative  be  its  negative  it  is  a  decreasing  exponential,  if  it  is  possible  is  an

increasing exponential  and both are convex. So, e raise ax is always convex and the

derivative tests that is the second order derivative also conforms that all right.
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Let us look at another function that we have seen yesterday. That is F of x equals x

square, you can recall that something like this correct this is a F of x equals to your x and

this is your x square. And you can see that..
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If you take this is very straightforward d F x by dx equals 2 x and d square F x by dx

square equals to which is greater than 0 implies x square equals convex x square is the

convex function. 



On the other hand if you take F of x equals to x cube, you will notice that d F x over dx

equals 3 x square and d square F of x over dx square, second order derivative 6 x greater

than 0 greater than is equal to 0 only x is greater than equal to 0. 
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Now, this is than equal to 0 for x greater than equal to 0 implies, x cube is convex only if

only for x greater than equal  to 0.  In fact,  what is that we had seen in the previous

module, if you plot x cube just to refresh your memory it look something like this all

right at so, this part is convex and less than 0 it is concave all right.

Now, how about concave functions, let us look at we have to test for the convexity of the

negative of that function correct.
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So, let us consider again or classic examples for concave functions that is the natural

logarithm of x, now minus F of x equals minus ln of x. So, to show first differentiate

minus the natural logarithm of x this is minus 1 over x you will considering minus of x.

Since to demonstrate concavity we have to demonstrate the convexity of minus of F x

ok. 

Now, take the second derivative d square over d x square of minus ln of x equals 1 over x

square, which is greater than equal to 0 implies minus ln x minus ln x equals contacts

what we had seen in the previous module implies ln x equals the natural logarithm of x is

convex.
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Again square root of x F of x equals square root of x minus of of x equals minus square

root of x d F x by dx equals well d F x by dx equals well this is minus over twice square

root of x. And d square F x by dx square this is equal to 1 over 4 x to the 3 by 2 which is

greater than 0 implies well minus square root of x equals x convex implies square root of

x equals concave ok. And that is what we had seen yesterday, if you plot square root of x

it looks like this and this concave and this is concave. So, this is square root of x all right.

Let us now come to the norm again norm cannot use the second derivative test. Let us

look at another interesting function in fact, let us look at a practical applications of this is

an interesting aspect and we are also seen this before.
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So, let us come to an application, let us look at y of x I am sorry, let us look at F of x

equals Q x. So, your Q x is the Gaussian Q function the Gaussian Q function remember

this is the CCDF, complementary cumulative distribution function of the standard normal

random variable, there is a Gaussian random variable with mean 0 and variance 1, this is

also the tail probability of the standard Gaussian random variable ok.
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 You can recall  this  is  given as follows, if  you have a PDF of the standard normal,

random  variable  mean  equal  0  variance  equals  one  this  is  the  CCDF  that  is  the

probability that x is greater than or equal to x ok.

So,  this  is  the  tail  probability  ok.  Also  the  CCDF  the  complementary  cumulative

distribution function, which is basically the probability that takes is greater than or equal

to X this is your Q x where x equals standard normal random variable, denoted by N of 0

1 that is Gaussian random variable mean equal to 0 variance equal to 1.
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 Gaussian random variable with mean equals to 0 and variance equals to unit that is

basically  the  CCDF of  that,  random variable  complementary  cumulative  distribution

function of that random variable, is basically the q function.

And remember the expression for the Q function, we have also seen that or you must also

be familiar with that that is basically 1 over square root of 2 pi integral of the Gaussian

probability  density  function,  or  let  me  write  it  integral  of  x  to  infinity  since  is  the

probability that its greater than equals to x integral of x to infinity e power minus x

square d by 2 dx,  which if  you take the constant  outside you can also write  this  as

integral x to infinity e raise to x square I am sorry e raise to we can use a different

variable of integration e raise to minus t square by 2 dt ok.



 Now  this  Q  function  is  a  very  interesting  and  deserve  it  frequently  arises  in

communication  and signal  processing also,  because this  q function represents  the bit

error rate might have seen the expression Q of 2 raise Q of square root of 2 E b or n not

which is an also write as Q of under root of SNR or two times SNR depending on how

you define it. 

So, this denotes the bit error rate this is the bitter the rate of the wireless computer rate of

additive white Gaussian noise channel BESK, bit error rate of BPSK binary phase shift

key over an a additive white Gaussian noise channel. This is the bit error rate over an

AWGN channel and in fact, it has a lot of applications arises quite frequently as I said in

communications as well as single processing all right. So, now, want you want to show is

the this Q function which is a lot of practical applications that this is convex.
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 We want to demonstrate that this is convex and in fact, that is convex for x greater than

or equal to 0, the slight qualification its not convex over the entire x convex only for x

greater than equal to 0.
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In fact, we start with the definition q of x equals 12 1 over square root of 2 pie, integral x

to infinity e raise to minus x square by 2 dx you take e raise to minus t square by 2 dt

apologize.  You  found  the  first  derivative  of  this  that  is  1  over  square  root  of  2  pi

derivative  of the top limit  which is  0,  because is  a constant  minus the  bottom limit

correct. So, we have minus derivative of the bottom limit is derivative of x which is

times 1, times the integral evaluated at the bottom limit that is e raise to minus x square

by 2 that is it. So, the derivative of Q of x phase minus 1 square root of 2 pi e raise to

minus x square over 2. 

Now, which means if you take the second derivative of this d square Q x by dx square

that will be minus square root of 1 1 over minus 1 over square root of 2 pi minus, 2 x

over 2 e raise to minus x square over 2.
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Which is equal to if you look at this which is equal to x over square root of 2 pi e raise to

minus x square by 2. And now you can see is the, this is always greater than equal to 0 e

raise to minus x square by 2, x is a course greater than equal to 0. So, when x is greater

than equal to 0 this is greater than equal to 0 which means greater than equal to 0, if x is

greater than equal to 0.

 So, we have the second derivative d square Q x by d square greater than equal to 0, if x

greater than equal to 0 implies that the Q function of x is convex, if x is greater than or

equal to 0 and this is in fact, very interesting property.
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That  will  again use in fact,  quite  some in the future,  if  you look at  a plot  of the Q

function the CCDF decreasing constantly 0, we have Q of 0 equals half, because this is

the CCDF the probability that X is greater than 0 is the point of symmetry correct Q of 0

is the probability, that X is greater than equal to 0 which is half which is equal to the

probability that the random variable X is less than equal to 0 for this, standard Gaussian

random variable with mean 0 and variance 1 ok.

 So, Q of 0 equals half equals probability x greater than equal to 0 Q of infinity equals

probability x greater than equal to infinity equal 0 at infinity it is 0.
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 Q of minus infinity equals probability X greater than equal to minus infinity. Since it has

to be greater than equal to minus infinity I am sorry X has greater than equal to yeah

greater than in fact, we can just replace this by greater than equal to greater than equal to

greater equal does not matter ok.

So, this is X greater than minus infinity is 1 therefore, starts at 1 and it decreases and

therefore, if you look at this portion this is convex and this is half at x equal to 0 this is

half, Q of x it is half this is convex and this is this portion which is less than 0 this is

concave ok. So, this is your Q function it is convex for X so, q function is basically

convex for X greater than or equal to 0 ok. So, that is what we have seen all right.

 and finally, coming now to the norm the norm, it is a straightforward to show that it is

convex the 2 norm so, well first we note the triangle. So, first consider the norm.
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Now, what we want to do is we want to consider any two vectors x 1 bar x 2 bar we want

to find the norm of theta x 1 bar plus 1 minus theta x 2 bar ok. The norm or the value of

the function at the convex combination now using triangle inequality we know that this

is less than. Now, observed that of course, for any convex combinations 0 is less than

equal to theta less than equal.

So, norm of theta x less than equal to norm theta x 1 bar, from the triangle inequality ok.

We are using the property here is there is a bar plus b bar is less than equal to norm a bar

plus norm b bar, now theta in 1 minus theta are greater than equal to 0, because 0 less

than equal to theta less than equal to 1. So, this is simply norm of theta times x 1 bar is

theta times norm of x 1 bar plus 1 minus theta norm of x 2 bar, which is basically your

theta times F of x 1 bar plus 1 minus theta times F of x 2 bar, where we have F of x bar

equals norm of x bar the 2 norm. So, all these are basically the two norm and this is your

f of theta 1 bar plus 1 minus theta times x 2 bar.

So, what we have shown is F of theta times x 1 bar plus 1 minus theta times x 2 bar is

less than or equal to theta times F of x 1 bar plus 1 minus theta times F of x 2 bar implies

F of x bar equals norm, the 2 norm this is convex ok. So, this is sort of a straight forward

way to show that the 2 norm is convex the l 2 norm is convex. However, this might be a

slightly converge some way to show it especially for especially for any function of a



vector, correct or a function of more than one variables that is the function of a vector all

right.

So, we have to one has device a general test, to demonstrate similar to the test that we are

shown earlier  the second order  derivative  test  for  a  scalar  for  a  function of a scalar

variable  single variable  x 1 has to derive or one has to arrive at  a similar  test  for a

function of two vector all right, which are something that we are going to develop or

look at in a subsequent modules. 


