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Lecture-22
Problems on Convex Sets (contd.)

Hello welcome to another module in this massive open online course. So, we are looking

at  examples  for  convex  sets,  and  various  properties  of  matrices  let  us  continue  our

discussion. 
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And what you want to look at in today’s module is you want to look at the properties of

hyperplane. So, this is example number let us call this is example number 9. So, consider

two hyperplanes given by a bar transpose x bar equals b 1 and a bar transpose x bar

equals b 2, recall that this is equation of hyperplane these are two hyperplanes. 

And in fact, these hyperplanes you can see these are parallel you will realize that these

are two parallel  hyperplanes, these are parallel hyperplsanes; so, that you can draw a

figure to denote this ok. So, if you represent this pictorially you find these are hyperplane

one and this is your hyperplane two and both have the same normal vector, this a bar this

vector is the normal vector correct this vector a bar is the normal to both the hyperplanes

these  are  the  normal,  this  is  the  normal  vector  to  both  hyperplanes  and in  fact,  the

distance between both these hyperplanes can now be calculated as follows.



If you look at this point of intersection of the normal vector with the hyperplane, that is if

you call  this  points as x 1 bar and x 2 bar this  is from your follows from a simple

knowledge of high school level geometry your coordinate geometry, that is these two

hyperplanes are parallel look, if you look at the point of intersection of this normal with

these two hyperplanes. And if you look at the distance of these two points of intersection

the distance between these two points of intersection that is the distance between these

two hyperplanes. So, the distance between these two hyperplanes is the distance between

these two points of intersection of the normal a bar with a hyperplane.
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So, distance between the hyperplanes is the distance between, these points of intersection

ok. And now what are these points of intersection remember the points of intersection are

along the normal. So, we have x so, we have let us look at the first hyperplane that is

your a bar transpose x bar equals b 1 the point along the normal, if you call that as k

times a bar some constant times a bar. 

Then this implies a bar transpose k times a bar equals b 1 which implies k times, now a

bar transpose a bar that is norm of a bar square equals b 1, this implies the constant k

equals b 1 divided by norm of a bar square.
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And this implies point of intersection of a bar, that is a point of intersection x 1 bar is this

is your point of intersection x 1 bar is k times a bar which is b 1 divided by norm a bar

square into that is k times a bar times a bar.

So, this is the point of intersection of the normal vector a bar with the first hyperplane.

Similarly the point of intersection with the 2nd hyperplane, that is if you look at x 2 bar x

2 bar is all you have to do is replace b 1 by b 2 that is b 2 divided by norm a bar square

into a bar ok. And therefore, we have found the two points of intersection with these

hyperplanes of the normal vector a bar of this hyperplane and therefore, the distance

between the hyperplanes is the distance between these point of intersection. 
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The distance norm of x 1 bar minus x 2 bar equals norm of b 1 a bar divided by norm a

bar square minus b 2 a bar divided by norm a bar square, the norm of this which is equal

to norm of b 1 minus b 2 times a bar divided by norm of a bar square which is equal to

magnitude of b 1 minus b 2 times norm of a bar divided by norm of a bar square, which

is magnitude of b 1 minus b 2 times norm of a bar divided by norm of a bar square,

which is equal to magnitude of b 1 minus b 2 divided by norm of a bar. So, you have this

a bar cancelling with this a bar square in the and you have norm magnitude of b 1 minus

b 2 divided by norm of a bar.
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This is the distance between the between the parallel, this is the distance between the set

of your parallel hyperplanes, which have the same normal vector a bar ok. And this is

important because this has a lot of applications this interesting property. So, if you look

at the normal if you look at these two hyperplanes, these two hyperplanes can be used for

classifications. So, you can have a set of points on one side a set of points on the other

side and you can use these two hyperplanes to separate these sets of points alright. So,

this is a know classifier in like this is the basis for what is known as the support vector

machine  classifier.  So,  this  forms  this  simple  principle  of  maximizing  the  distance

between hyperplanes this forms the basis for the SVM.

That is your support vector machine this forms the basis for the support vector machine.

And this basically  this maximizes maximizing the distance between this  hyperplanes,

basically  makes  the classifier  more effective  thereby effectively  separating these two

different classes of objects alright. So, been such problems your interested in maximizing

the distance between the hyperplanes,  which is  given by you can see magnitude b 1

minus b 2 divided by norm of a bar. And therefore, if you want to maximize the distance

between hyperplanes you have to minimize norm of a bar.
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So, if you minimize to maximize distance that is if b 1 and b 2 are fixed you have to

minimize  normal  if  in  fact,  this  is  a  very  interesting  property  that  pertains  to

classification ok. Now, let us look at another in very interesting problem this is number



10  example  number  10,  you  want  to  show  the  set  S  is  convex  if  and  only  if  its

intersection with every line is convex, what this means is that if a set alright consider any

set convex set ok.
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Now, if its intersection with every line is convex that is you take any line and, if you look

at its intersection with the line, you can clearly see that the intersection with every line is

a line segment which is itself is a convex set ok. So, the intersection with any line is a

convex set. 

On the other hand if you take if you take for instance a region like this our non convex

set.  And  if  you  take  any  line,  then  the  intersection  with  respect  to  this  is  this  two

disjointed line segments and this is not convex. So, this is an if and only if statement, but

it says something very interesting. If the intersection of a set the set is convex then it

intersection with every line is convex.
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Similarly, if  the intersection of set  with every line is  convex, then the set  as is  also

convex and this is easy to verify you can see this as follows, let us start in one direction

if S is convex. And the intersection and the, if S is convex now consider any line given

any line, now S intersection line is convex if S is convex.

The set S intersection the line is convex, this is true because S is convex given that S is

convex any line is a convex set we know that. So, convex intersection convex this is

convex this is trivia ok. So, S is convex the set S is convex, then a line any line is also a

convex set. So, S intersection with the line convex set intersection with another convex

so, that is also convex, let us move it in the other direction. If S intersection with any line

is convex ok, consider any two points x 1 bar x 2 bar

 This  implies  S intersection with line through x 1,  because that  is  also a line a line

through consider a line through x 1 bar comma x 2 bar, this is also a line this implies the

intersection with the line through x 1 bar plus x 2 bar is convex. This implies that if you

look at any convex combination theta times x 1 bar plus 1 minus theta times x 2 bar 0

less than equal to theta less than equal to 1. This must belongs must belong to as the

reason is the following, because x 1 bar x 2 bar belongs to S, x 1 bar x 2 belongs to the

line through x 1 bar x 2 bar. Therefore, x 1 bar x 2 bar belongs to the intersection of us

with the line alright.



Now,  if  you  look  at  any  convex  combination  that  has  to  naturally  belong  to  this

intersection, because of the convex combination does not belong to the intersection; that

means, the intersection is not convex combination.
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Therefore, the convex combination of x 1 bar, because x 1 bar x 2 bar belong to the

intersection.  The  convex  combination  of  x  1  bar  x  2  bar  must  also  belong  to  the

intersection correct, x 1 bar x 2 bar implies their convex combination must also belong to

the  intersection,  otherwise  the  intersection  is  not  going  to  be  convex,  which  intern

implies that the convex combination belongs to S. 

Because the convex combination belongs to the intersection, which implies that S is the

which implies that S a convex set. So, the convex set if you consider an intersection with

any  line  is  convex.  And  the  other  direction  on  other  hand  for  conversely,  if  the

intersection of set S with any line is convex, then the set it S itself is a must be a convex

set alright, this is a very interesting property and often very useful in demonstrating the

convexity of sets alright.
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Let us look at another interesting problem that pertains to probabilities problem number

11. That is let X be a random variable and it will take values a 1 a 2 up to a n and the

probability that X takes the value a I, this is given by the this is equal to P i. So, this is

the probability X random variable x takes the value a i probability X takes the value ok.

Now,  naturally  if  you  can  look  at  the  set  of  all  this  probabilities.  So,  we  have

probabilities a 1 a 2 a n corresponding probability P 1 P 2 P n.

Now, one naturally the sum of the probabilities must be one first this probability each of

these properties, because their probabilities they must be greater than equal to 0. And

further the sum of all  this probabilities must be equal to 1. Therefore,  we must have

summation i equal to n P i equals to 1, which is basically also represented by P 1 plus P 2

plus P n equals to 1. And we must also have each P i is greater than or equal to 0.
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And, if you denote this by the vector P bar P 1 P 2 P n and then remember, you can use

the  component  wise  inequality  symbol  to  say  this  vector  P  bar,  each  component

remember this is our component wise inequality, this is the component wise inequality.

Each component of this vector P bar must be greater than equal to 0. Now, I want to

examine some properties of this set that contains of this set of vectors P bar let us look at

the first one ok.
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Let us look at all the probability vectors P bar, such that alpha is less than or equal to the

expected value of a random variable X less than or equal to beta. Set of all P bar that

satisfy this is this set convex, we would not ask this question is the set of all probabilities

P bar, such that the expected value of a random variable X lies between alpha and beta is

this set convex well that is easy to figure out.

If you look at the expected value of a random variable X, that when we calculated as

follows that a summation i equals to 1 to n. The expected value of a random variable is

probability that it takes the value a i into a i which is summation i equals to 1 to n P i a i.
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Which is basically a 1 times P 1 plus a 2 times P 2 plus a n times P n, which you can find

as a 1 bar a 2 bar a n bar time P 1 P 2 P n, you can given this as a bar transpose this is

your P bar. So, expected value of the random variable X, now becomes a bar transpose P

bar.
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And therefore, if you look at this problem alpha is less than or equal to expected value of

X less than or equal to beta this implies alpha is less than or equal to a bar transpose P

bar less than or equal to beta. So, this is the intersection of two hyperplanes, you can

readily see that this is the first hyper plane is a bar transpose P bar less than or equal to

beta.

Second hyper plane is minus a bar a bar transpose P bar greater than equal to alpha,

which can be written as a bar transpose P bar less than equal to minus a bar transpose P

bar less than equal to minus alpha. So, this is the intersection of two this is the in fact, the

intersection of two half spaces, I am sorry intersection of two this is the intersection of

two half spaces implies that this is convex. 
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Each  is  half  space  expected  value  of  X is  less  than  equal  to  alpha,  that  is  can  be

represented as the half space a bar transpose P bar is less than equal to beta, expected

value of x greater than equal to alpha is another half space. So, this forms the intersection

of two half spaces and therefore, this is indeed this set is indeed this is indeed a convex

set alright.

(Refer Slide Time: 23:23)

Let  us  look at  another  set  probability  of  X greater  than  alpha,  that  is  the  set  of  all

probability vectors such that the probability of X greater than equal to alpha, is less than



or equal to another constant beta or property of X greater than alpha is less than or equal

to beta. Is this set of all P bar that satisfies this is the resulting set of P bar convex well

what is the probability that X is greater than alpha the probability that X is greater than

alpha.

A simply summation of all probabilities P i such that the corresponding a i are greater

than alpha. And this since this probability X greater than alpha has to be less than equal

to beta, this is less than equal to beta this is probability X greater than alpha that is you

simply have to sum the probabilities of corresponding to all a i S. That is greater than

alpha and you can clearly see, this is the linear sum this is the half space, this is the half

space implies, once again this is convex.
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For example, let us take an example to understand this better for instance let us say you

have a 1 a 2 a 2 a 4 or up to a 5 a 6, take the simple example n equal to 6. Now, let us say

your alpha is here lies between a 3 and a 4. So, these are less than alpha so, these are

greater than alpha and these are less than alpha. So, the probability X is greater than

alpha equals the probability X equals either a 4 or a 5 or a 6 equals P 4 plus P 5 plus P 6.

So, probability X greater than alpha less than beta implies P 4 plus P 5 plus P 6 less than

beta.
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This implies basically 0 0 0 1 1 1.This is your a bar transpose times P 1 P 2 up to P six

this is I am sorry less than equal to beta, this is your a bar transpose this implies you can

write this as a bar transpose P bar less than equal to beta and this is a convex set ok. So,

the set of all probability vectors P bar such that the probability X is greater than alpha

some quantity fixed constant alpha is less than equal to beta is a convex set ok. Now,

what about the second moment what about expected value of X square and this is an

interesting aspect.
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Let us look at the set of all vectors P bar such that expected value of X square is less than

or equal to alpha. Now, we want to ask the question is this convex well,  what is the

expected value of X square, this might seem a little confusing, because X square is non-

linear ok. But, what is but look at expected value of X square this is summation i equals

1 to n probability X equals, well probability X equals probability X equals a i into a i

square that is the expected value of X square ok, which is equal to P 1 times a 1 square

probability X equal to a 2 times a 2 square plus P n times a n square ok, which is now

you can again write it as a different vector transpose times P bar.
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So, I can write this as a 1 square it is very interesting, I can write this as a 1 square a 2

square times a n square times the vector P bar P 1 P 2 up to P n ok. 
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Now, this if you look at this, this is a different vector you call this as well let us call this

as u bar transpose, this is your vector P bar. where what is u bar; u bar is this vector, we

are now calling this vector a 1 square a 2 square so, on a n square by this vector u bar.

So, expected value of X square if you look at that is, u bar transpose P bar and expected

value of X square less than equal to alpha. 
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This implies u bar transpose P bar less than equal to alpha. And you can see this is once

again  corresponds to  a  half  space  implies,  this  is  yes  this  is  therefore,  convex.  And



therefore, once again the set of all probability vectors once again the set of all probability

vectors P bar such that expected value of X square is less than or equal to alpha the set of

all such vectors P bar is once again convex alright.

So, these are some interesting applications of the notion of convexity, convex sets some

of the properties of convex sets and so, on which have heavy application or which are

going  to  be  used  very  frequently  in  our  discussion  on  optimization  theory,  on  our

discussion on the practical  applications  of optimization bit  in the context of wireless

communication, or signal processing or several other fields.

So, these form the these principles these examples that we are so, far seen from the basic

building blocks of several large problems, or several large how do you put it several

large paradigms or frameworks, that we are going to explore in the future with respect to

optimization and its application in several areas of interest.

Thank you very much. 


