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Lecture – 19
 norm balls and Matrix Properties: Trace, Determinant

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking  at  the  l  infinity  ball  alright;  we  have  find  the  l  infinity  norm which  is  the

maximum of the magnitude of the different components of a vector x bar, and let us now

look at continue our discussion on the l infinity balls.
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So, the we are looking at it is a l infinity ball is a simply defined as, the infinity norm of a

vector less or than equal to 1. Let us consider a simple scenario 2 dimensional vector x

bar which has 2 components x 1 x 2 and now the l infinity norm that is if you look at the

l infinity norm that will simply be the maximum of magnitude of x 1 comma magnitude

of x 2.

Now, l  infinity  norm less or equal to 1 implies  this  maximum of the magnitude x 1

comma magnitude x 2 less than or equal to 1 this implies that knows is a maximum of 2

quantity is less than or equal to 1, this implies that each of the quantities has to be less

than or equal to 1.
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Now, magnitude x 1 less than equal to 1 this implies that minus 1 less than or equal to x

1 less  than or equal  to 1 that  is  x 1 has to  lie  between minus 1 and 1,  and further

magnitude of x 2 less than equal to 1 implies minus 1 less than or equal to x 2 less than

or equal to 1.
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And now so, this is the intersection of these 4 in fact, if you can see there are 4 half

spaces; one is given by x 1 less than or equal to 1 that is this is the first coordinate x 1 x

2. So, let us say this corresponds to your hyperplane x 1 equal to 1 and then on the



opposite side let us say this corresponds to the hyperplane x 1 equals minus 1. The strip

end between denotes the region minus 1 less than equal to x 1 less than equal to 1 and

similarly this corresponds to the hyperplane, this corresponds to the hyperplane x 2 equal

to 1. And, this corresponds to the hyperplane x 2 equals minus 1 and now the region

which is between these hyperplanes this polyhedron is in fact, what is your l infinity that

is the square is the l infinity ball.
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So, l infinity ball equals square this is also a square with sides that are parallel to axes;

the sides are. Remember the l 1 square had the diagonals that are, if you look at the l 1

square that  had the diagonals  along the axes,  and the l  infinity  square is  the normal

square that you would imagine which has the sides that are parallel to the diagonal sides

that are parallel to the axes. So, this is your l infinity looks like a square ok.

So, this is something interesting this normally when you think of balls, you think circles

and spheres, but when you look at the l 1 norm ball alright which is a tilted square and

the l infinity norm ball which is essentially a square alright. So, these are also norm balls

that is when you generalize the definition of a norm ball, you can derive these kinds of

norm balls which are a very interesting shapes ok.
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And we also have this notion of an l 0 norm, which is very interesting and well what is

the l 0 norm l 0 norm and the l 0 norm you can essentially show, that if you look at a

vector. What is a l 0 norm that is the definition is you can show that norm x bar 0 equals

the number of non-zero; this is equal to the number of non-zero elements of x bar this is

very interesting the number of non-zero elements of x bar.

So, if you minimize the l 0 norm alright and this is a very idea, if you minimize x bar of

0 this results in a large so; large number. So, what you will observe is large number of

components of x bar will be 0. So, you will get a vector x bar typically, in which a large

number of its components are 0 because the l 0 norm is the number of non-zero elements.
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Implies and this, such a vector x bar which has a large number of non-zero elements,

such a vector x bar is termed to be it has a very interesting name this is known as a

sparse vector alright. Similar to what we similar to the usage a sparse sparsely populated

area  essentially  means  that,  there  are  very few people.  So,  a  sparse  vector  basically

denotes a vector in which sparse it is sparsely populated with components a large only

very few non-zero components, and a large number of components are a large number of

components are 0.
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So,  it  brings  to  mind some vector  like  this,  which  has  0  some component  non-zero

alright. So, what you have is a vector in which large number of elements equal to 0 such

a vector is termed as a sparse vector and this is a very interesting property.
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And what is interesting about this is that is you can show that most signals most naturally

occurring signals such as be it either music or video or images although they are not

dangerous sparse, they are sparse under some of you know some appropriate domain for

instance when you look at the either the Fourier transform or the wavelet transform of

these signals, they are very sparse and that is a very important property.

So, when you look at most naturally occurring signals such as either a music signal or

video or images are sparse in some are sparse in some suitable domain example either

the wavelet domain or the Fourier domain that is when you take the Fourier transform or

basically the frequency domain, you can also say. So, they are sparse in some domain

and this can be used for at this idea is a very important idea, which can be used for signal

processing and to improve the performance.
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This  important  property  that  is  sparsity  can  be  exploited  for  signal  processing.  This

important idea can be exploited as signal processing and this is termed as compressive

sensing and one of the domains where this is exploited is known as one of the important

areas,  where  this  idea  is  used  compressive  sensing  also  this  is  abbreviated  as  CS.

Compressive sensing this is a relatively new field in fact, a path breaking innovation I

must say which has gained a lot of popularity in the recent past where in you exploit the

knowledge that  this  vector that is  this  vector x bar which corresponds to a naturally

occurring signal is sparse in a certain suitable domain. And, that can be used to further

that can be used in signal processing and to further improve the performance alright in

comparison to other schemes alright. 

So,  this  is  in  fact,  a  break through this  in  fact,  is  a  or  you put  its  a  break  through

paradigm alright it is a break through framework or its compressive sensing framework

or the framework that exploit sparsity of the signal vectors is a break through framework

that can be used for enhanced signal processing alright. So, with that let us complete this

discussion,  let  us  move  on  to  looking  at  some  problems  to  better  understand  the

concepts. Let us start with a few problems related to the determinants and the positive

semi definite property. So, I will want to start with some examples.
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To start  with  let  us  start  with  some  simple  examples  related  to  matrices  and  their

properties. So, let A be an n cross P matrix and B equals P cross n matrix, the first thing

we want to show is that determinant of I n plus A B equals the determinant of I m or I am

sorry determinant of I n plus A B is the determinant of I p plus B A.

Let us make this n cross m matrix. So, I think that will make it life much more simpler.

So, this B is an naturally if you are multiplying m they have to have dimensions that

match up. So, this is we want to show this is an. So, I n this is the n cross n identity

matrix and this on the other hand this is the m this is the m cross m identity matrix now

solution is as follows.
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Now, if you consider let us consider the matrix, let us consider the matrix P which is

given as I n minus A, B I m. Now, I can perform row operations or in this case block row

operations ok. So, the let us call this as block row 1 denoted by R 1 and this is block row

2 denoted by R 2.

(Refer Slide Time: 14:34)

Now, let us obtain P tilde by performing R 2 that is block row 2 minus the matrix B times

block row 1. So, you obtain the matrix P tilde which is basically well first row remains

unchanged second row is B minus I n times B which is 0 i minus of B times minus a. So,



that is I m plus B A. Now if you look at the determinant of P tilde, which is equal to

determinant of P. Now this arises since row operations since determinant remember you

might  have  seen  a  property  of  determinants  before  that  its  determinant  remains

unchanged in row operations. So, determinant P tilde equals determinant P now you see

the lower block is 0’s, which means the determinant of P is simply the determinant of I n

times the determinant of I m plus B A.

Now, the determinants of I n is 1 since it is an identity matrix remains unchanged. So,

this  quantity  equals  to  1.  So,  this  is  simply  the  determinant  of  I  m  plus  B  A.  So,

determinant of P tilde equals the determinant of I M plus B A let us call this as our result

1.
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Now, let us form the matrix P hat by performing R 1 plus A times R 2 on. So, R 1 goes to

let us write this as follows R 1 goes to R 1 plus A times R 2, here we have R 2 goes to R

2 minus B times R 1. So, on P and this gives the matrix you can check, this gives you the

matrix well this will be I n plus A times R 2 A times B plus I m plus well let me just

check this, this is n cross m matrix B times A B is m cross n; so, this B times A.

So, this will be I n or 1 plus a times R 2. So, I n plus B times A I am sorry this will be I n

plus A times B and this will be I n plus A times B, this will be the other will be minus A

plus A times minus A plus A times i.  So, this will be 0 and the second row remains

unchanged that will B and I m and now if once again.
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So, this is your P hat and now, if you once again formulate the determinant of P hat that

is  going  to  be  simply  that  determinant  because  this  is  0,  that  is  going  to  be  the

determinant of I n plus A B times the determinant of I m.

So, and by the way again once again this is equal to the determinant of P, because you

are performing row operations on P determinant of I m is 0. So, this will become I n plus

determinant  of I  n plus A B and finally, from 1 and 2 from 1 and 2 it  follows that

determinant of I plus B A equals determinant of I plus A B alright. So, this follows from

the results in 1 and 2.
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Let us look at another interesting example that is example number 2, we want to show

that the trace of a (Refer Time: 20:03) square matrix A is the sum of the eigenvalues of A

and the determinant of a is the product of the eigenvalues. So, this is trace which is equal

to sum of eigenvalues, and the determinant is basically the product of eigenvalues ok.

And this  is  well  to do this  you can start  with the property the following think for a

general matrix that A can be expressed as U lambda U inverse alright where U equals

matrix of eigenvectors.
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Lambda is diagonal value or diagonal matrix of eigenvalues.
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Lambda equals diagonal matrix of eigenvalues and lambda has the following structure

ok. If A is an n cross n matrix, lambda equals diagonal matrix of eigenvalues assumes

that a equals an n cross n matrix square matrix alright. Now of course, we already seen

that if a is PSD then it becomes U equal to U lambda U Hermitian. If A is a PSD matrix

if A equals PSD well the above is valid for any general matrix A, this becomes U lambda

U Hermitian. I am sorry because U is orthogonal U is a unitary matrix for a PSD matrix

A; U is a unitary matrix and U inverse is simply U Hermitian.
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Because U Hermitian U equals U U Hermitian equals identity, which implies that U

Hermitian equals U inverse ok, but this is only for a PSD matrix ok. But, we can show

the above property that is the trace is equal to the trace of matrix a is equals the sum of

its eigenvalues, for any general matrix and that is as follows if you consider the trace of a

you use the eigenvalue decomposition and now you replace the trace as U lambda U

inverse. 

Now we know that the trace of A B equals trace B, that is the trace of that is if you are

interchange the product of the matrices the order of the product in the trace. So, this will

become trace of lambda it is very simple. So, this is become trace of lambda U inverse if

you this is using the property, trace of CD just not to confuse with A equals trace of DC.

Now, U inverse U is identity. So, this is trace of lambda which is the diagonal matrix of

eigenvalues and this is nothing, but summation of i lambda i.
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Now, similarly one can also show now if you look at the determinant of A that is the

determinant of U lambda U inverse, which is now the determinant of product of matrices

is the determinant of the product of the determinants, which is equal to the determinant

of lambda times the determinant of U times the determinant of U inverse.

Now, if you look at the determinant of U into the determinant of U inverse, because U U

inverse  is  identity  determinant  of  identity  is  1.  So,  therefore,  determinant  of  U into

determinant of U inverse is 1 this implies this equals the determinant of simply lambda

which is now nothing, but basically the product of the eigenvalues and this is a very

interesting property that is frequently used pi equals 1 to n this is the. So, you can say

determinant  of  A equals  product  of  its  eigenvalues,  trace  is  equal  to  the  sum of  its

eigenvalues trace of a matrix equals the sum of its eigenvalues ok.
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Now similarly, you can also exploit this property, if you look at trace of a matrix A raised

to the power of n, that equals trace of A times A, the product n times we have already

seen this for a positive semi definite matrix that becomes U, lambda U inverse, U lambda

U inverse times U lambda U inverse, that becomes trace of I am sorry that becomes trace

of well U lambda raised to the n U inverse, which is nothing, but trace of lambda raised

to the power of n U inverse U which is trace of U inverse U identity. So, this is trace of

lambda raised to the power of n, this is summation over i lambda i raised to the power of

n that is trace a raised to the power n.

And in the similar way you can show that the determinant of a raised to the n is the

product of i equals 1 to n lambda i raised to the power of n. This is nothing, but the

determinant of U lambda raised to the power of n U inverse which is how we get this

result ok. So, these are some interesting properties. In fact, very interesting properties

that come in handy frequently during manipulation, that is a trace of a matrix a square

matrix  a  is  the  sum of  its  eigenvalues  and  the  determinant  of  a  square  matrix  a  is

basically the product of its eigenvalues good.

So,  will  stop  here  and  continue  to  this  discussion  looking  up  by  looking  at  other

examples in the subsequent modules.

Thank you very much.


