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Lecture – 18
Introduction to Affine functions and examples: Norm cones l 2, l p, l 1, norm balls

Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking  at  the  properties  of  convex  set  or  basically  operations  on  convex  sets  that

preserve  convexity,  alright.  Let  us  continue  our  discussion.  Let  us  look  at  another

important operation that preserves convexity which is known as an affine function, ok. 

(Refer Slide Time: 00:34)

So,  the  next  important  transformation  that  preserves  convexity  and  this  arises  fairly

frequently  is  what  is  known as an affine.  This  is  known as  an Affine  Function.  For

instance, what is an affine function? Now, if you have a vector that is for instance let us

say x bar is a vector, let say this is your vector.

Now, an affine function is a function that is of the form A x bar plus b bar that is A is a

matrix,  that is multiplied by trans matrix and translated by the vector b bar. So, this,

basically this function of this from this is termed as a function of this form is termed as

an Affine Function. 



(Refer Slide Time: 01:50)

Now, under affine function now, the interesting property or it is relevant with respect to

convex sets is that if S is convex, this implies that F of S that is affine transformation

applied  on  as  in  the  resulting  set  F  of  S  is  convex,  ok.  So,  F  of  S  implies  affine

transformation of S or affine transformation of all elements in it S that also results in a

convex set ok. Typically, for instance we take a convex set, if you rotate it and translate

it, that is which corresponds to basically an affine transformation, the resulting set is also

convex.

Now, interestingly, what one can also show that an affine pre composition also results in

a convex set, alright. So, what is the meaning of that, that is F inverse S; if S is convex

then F inverse of S is also convex.
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This implies, now what is F inverse of S; F inverse of S, that is the inverse of the set

under this affined pre composition is the set of all vectors x bar such that F of x bar

belongs to S. This is known as an affined pre composition. We have F of S which is

affine composition, F inverse of S is the affine, this is the Affine Pre composition. For

instance, an application can be demonstrated as follows.

(Refer Slide Time: 0:44)

Consider the following simple example. We have already seen a Norm Cone. Let us go

back to our illustration of the Norm Cone and what we have seen in the Norm Cone is



that  we have this  vector  x tilde which is  of the form x bar x n plus 1,  this  is  an n

dimensional vector. We have an n dimensional vector x bar and another element n plus

1th element x n plus 1 and the norm cone is basically described by the set, norm of x bar

is less than equal to x n plus 1 which basically implies that norm x bar square is less than

or equal to x square of n plus 1; which basically implies that x bar transpose x bar is less

than or equal to x square of n plus 1, correct because remember norm x bar square is

simply x bar transpose x bar.

(Refer Slide Time: 04:44)

So, x bar transpose x bar less than equal to x square n plus 1. This is an alternative

representation  of  the  Norm  Core.  Now,  let  us  see  what  is  affine  pre  composition

corresponds to. So now, let us consider x bar equals P times another vector V bar and x n

plus 1 equal C bar transpose V bar. So, I can write x tilde equals this vector which is

already we have seen x bar x n plus 1, this is equal to the matrix P stack matrix P C bar

transpose  and  C  bar.  So,  this  is  your  matrix  A,  b  bar  is  0.  So,  this  is  an  affine

transformation, correct or rather this is an Affine Function.

(Refer Slide Time: 06:14)



Now, we want to find the set of all F inverse of sets. So, this is our convex set S. Now, F

inverse of S will be all S or will be all let say V bar such F of V bar belongs to S;

implies, now if you look at F of V bar belongs to S implies well, we already seen x bar

transpose x bar less than or equal to x square n plus 1. Now, substituting for x bar and x n

plus 1, we have x bar is well P times V transpose into x bar which is P times V bar is less

than or equal to x square of n plus 1 that is C bar transpose V bar. 

Remember, x n plus 1 is C bar transpose V bar, square of that which basically implies

that V bar transpose P transpose P into V bar is less than or equal to C bar transpose V

bar whole square which basically implies V bar transpose V tilde V bar is less than or

equal to C bar transpose V bar whole square, ok.
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And this matrix V tilde is defined as P transpose P and you can see, this is a positive semi

definite matrix. So, now, what you can see is this set alright V bar which satisfies this by

the property of the affined composition, right since x bar correct since we said F of V bar

that is x bar belongs to S, that is the norm cone. So, the V bar which is the affine pre

composition  which  basically,  which  is  the  set  corresponding  to  the  affine  pre

composition alright that also forms a, that also forms a convex set. So, this set V bar such

that F V bar belongs to S which is characterized by this relation also forms set of all V

bars satisfying this also forms, this also forms a convex set, ok.

And in fact, this is a convex cone is, we can think of this as a general expression for a

convex  cone  given  by  the  affine  pre  composition  ok,  alright.  So,  these  are  very

interesting properties; the first one is a rather simple and which is basically says that

intersection of two sets, if two sets are convex or a finite number sets if or if any number

of sets is convex, their intersection is also convex. And further, if you can consider an

affine function F and a convex set S, then both F S and F inverse S are also convex,

alright.
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Let us now move on to another interesting aspect and let us re visit the concept of Norm

Balls that we have seen previously. We had seen this concept of a Norm Ball, ok. What is

a norm ball? Now, remember the norm ball was defined as follows. I have the 2 norm,

this  also known as the l  2 norm which you can write  as magnitude x 1 square plus

magnitude  x  2  square  plus  1,  magnitude  x  n  square,  this  is  the  l  2  norm  and  the

corresponding l 2 norm ball that is given as norm of x bar that is l 2 norm less than or

equal to for instance r let say equal to 1, ok. So, this is your l 2 norm ball.
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And we have  also  seen that  this  l  2  norm ball  for  instance  in  two dimensions,  this

corresponds to a this is l 2 norm ball which is basically equal to circle slash sphere in n

dimensions, it is a sphere ok. So, this is your l 2 norm ball, ok.
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Now in general, we would also we one can define; now in general, one can define what

is known as an l P norm. What is this l P norm? If you take a vector x bar, the l P norm

indicated by this  P here is  basically  given as magnitude x 1 to the power of P plus

magnitude x 2 to the power of P plus magnitude x n to the power of P whole raise to the

power of 1 over P. 

Now, you can see if you set P equal to 1, P equal to 2, it reduces to, reduces to the l l, l 2

norm; therefore it is general. So, for P equal to 2, it reduces to magnitude x 1 square plus

magnitude x 2 square so on up to magnitude x n square 1 over 2, that is square root of the

whole thing which is nothing but the l 2 norm. Now, this can be now used to construct

other very interesting norm. 
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So, for instance, the l 1 norm which is one of the most fundamental and widely applied

the l 1 norm is norm of x bar 1. You can see that simply reduces to magnitude x 1 plus

magnitude x 2 that is each to the power of P which is 1 plus magnitude x n whole to the

power of 1 over P which is again 1. So, this is simply magnitude x 1 plus magnitude plus

magnitude x n, this is the l 1 norm. And the l 1 norm sphere or the l 1 norm ball, this is

given by norm x bar of 1 less than or equal to 1, this is your l 1 norm ball. And for

instance to look at this, let us consider a 2 D example, consider 2 dimensional case.
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If x bar equals x 1 plus x 2 norm x bar less than equal to 1, this implies magnitude x 1

plus magnitude x 2 less than equal to 1, ok. Now, how to find this norm ball? You can

consider four cases; one is x 1 comma x 2, both greater than equal to 0 in which case

magnitude x 1 is nothing but x 1, magnitude x 2 is x 2 less than equal to 0. So, this

corresponds to the first quadrant.

(Refer Slide Time: 15:25)

Second quadrant, we have x 1 less than 0, x 2 greater than equal to 0; this corresponds to

the case magnitude x 1 is minus x 1. So, this will be minus x 1 plus x 2 less than equal, I

am sorry this is not 0, this is 1 less than equal to 1. This is the second quadrant. Then in

the third quadrant, you will have both are negative, you will have minus x 1 minus x 2

less than equal to 1. And in the fourth quadrant, you will have x 1 because x 1 is greater

than equal 0, minus x 2 because x 2 is less than 0 less than equal to. So, these are the four

cases and if you plot it, you will find something very interesting.
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If you plot the l 1 norm ball and what you will observe is if you look at the first quadrant

that corresponds to x 1 plus x 2 less than equal to 1 which is basically this region; x 1, x

2, x 1 comma x 2 greater than equal to 0 and x 1 plus x 2 less than equal to 1. And

similarly, this will be the corresponding region in the second quadrant, third quadrant,

fourth quadrant. And therefore, if you look at this, what you will observe is that this is

the region corresponding to the l 1 norm ball, it is very interesting. It is very different

from the l 2 norm ball in the sense that you can see that it has pointed edges, something

very interesting.  So, you can see and this  simple observation which means it  is  non

differentiable if you see, if we observe it, the simple observation leads to in fact profound

implications.

So, if you look at the l 2 norm ball, you can see this is smooth, it has no (Refer Time:

17:47) or edges. So, the l 2 norm is something that is very amenable for analysis that is it

can be easily differentiated and so on whereas, if you look at the l 1 norm ball, something

very interesting that is a square with the diagonals along the axis. So, it is a tilted square

and  being  a  square,  it  has  the  sharp  edges  at  which  it  is  not  differentiable.  So,  is

something that is very interesting. 

It is an very interesting shapes. So, this is not what you think of when you think of a so,

this is basically your tilted square and it is 90 degrees, it  is angles are 90 degrees is

symmetric and the diagonals, the diagonals are aligned with the axis or diagonals are on



the axis that is your x and y axis or your x 1 and x 2 axis, ok. So, this is the l 1 norm ball.

Now, related to this is this notion, now we have seen the l 1 norm ball. Now, something

very interesting is what is known as the l infinity norm that is what happens when P

tends to infinity.
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So, the l infinity norm that is norm of x bar infinity that is defined as limit P tending to

infinity norm of x bar which is limit P tending to infinity under root of not under root,

this is magnitude x 1 raise to the power of P plus magnitude x 2 raise to the power of P

plus  magnitude  x n raise  to  the power of  P whole  to  the  power of  P which  can be

basically shown to be magnitude of more x i, 1 less than equal to i, less than equal to n

which is basically simply the maximum of magnitude x 1, magnitude x 2, so on up to

magnitude of x n.
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So, this is the l infinity norm, something that is very interesting. So, this is the l infinity

norm. And now, one can corresponding derive the norm ball corresponding to l infinity

norm, the norm ball and that is naturally given as norm of x bar infinity less than equal to

1. So, this is an interesting norm. 

So, norm of vector, the infinity norm is simply in the maximum of the absolute values of

the components of that vector and the l infinity norm ball is basically simply norm, the

infinity norm of vector, the region corresponding to the infinity norm of a vector x bar

being less than or equal to for instance, any radius. In this particular case, you can say

the radius is equal to, alright. 

So, we will stop here and continue with this discussion in the subsequent module.

Thank you very much.


