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Lecture – 17
Positive Semi Definite Cone And Positive Semi Definite (PSD) Matrices

Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at  various  convex sets  and their  practical  applications  relevance  to  practical

applications. So, let us continue our discussion by looking at the set of Positive Semi

Definite Matrices which is also known as the Positive Semi Definite Cone.

(Refer Slide Time: 00:30)

So, what do we want to look at is we want to look at the positive we want to look at the

positive semi definite cone. And, well what happens in this, in this case the positive semi

definite  cone  well,  let  us  consider  this  set  of  S  n.  Now, S  n  equals  the  set  of  all

symmetric, remember we have defined symmetric matrices before that is if a matrix A

equals A transpose for a real matrix it is a symmetric matrix set of all symmetric n cross

n matrices. 



(Refer Slide Time: 01:40)

And let us call this matrix S n is not defined another set S n plus as the set of all matrices

X element of s n that is a set  of symmetric matrices such that X greater than I will

describe this what does it mean to say a matrix is greater than equal to 0, where this

notation X with this (Refer Time: 02:07) or this curved greater than equal to sign this

denotes that X is a positive semi definite matrix X is a positive semi definite or PSD

matrix X is a positive semi definite matrix, ok.

And, so, this is the set of all symmetric positive semi definite matrices, of size n cross n,

remember. So, s n plus is a set of all symmetric is a set of all symmetric positive semi

definite  matrices  of  size  n  cross  n,  and  remember  the  definition  of  a  positive  semi

definite matrix X is that if we take any vector Z bar it must satisfy the property Z bar

transpose X into Z bar is greater than or equal to 0, that is the definition of positive semi

definite matrix, ok.



(Refer Slide Time: 03:40)

So, PSD implies Z bar transpose X into Z bar greater than equal to 0 for all Z bar that is

for all Z bar which is an n dimensional vector. Now, we can show and it is not very

difficult that this set S n plus this is a convex set this is a very important convex set. The

set of all symmetric positive semi definite matrices this is a convex set alright that is S n

plus that we have just defined is a convex set and that is not very difficult to see we take

any two elements that is we take any two positive semi definite matrix, this is similar to I

mean we go back to the fundamental definition of a convex set that is we take two points

or in this case two matrices that are positive semi definite.

So, let us say X 1 and X 2; X 1 belongs to S n plus that is X 1 is positive semi definite X

2 belongs to S n plus which implies Z bar transpose X 1 Z bar is greater than equal to 0,

Z bar transpose X 2 Z bar is greater than equal to 0.



(Refer Slide Time: 05:10)

Now, we want to show that if you take a convex combination theta times X 1 plus 1

minus theta times X 2, 0 less than equal to theta less than equal to 1. We want to show

this  is  also PSD or that it  belongs to the set  S n plus.  Very simple,  you take Z bar

transpose theta X 1 plus 1 minus theta X 2 into Z bar that will be equal to that equals

theta Z bar transpose X 1 Z bar plus 1 minus theta Z bar transpose X 2 Z bar.

Now, remember X 1 is positive semi definite. This quantity Z bar transpose X 1 Z bar is

greater than equal to 0, X 2 is also positive semi definite. So, Z bar transpose X 2 Z bar

this is greater than equal to 0. Now, theta and 1 minus theta both these quantities are

greater than equal to 0, because 0 less than equal to theta less than equal to 1. Remember,

this is a convex combination, so theta lies between 0 and 1, ok.
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This implies this whole quantity above is greater than equal to 0, which implies that

convex combination theta X 1 plus 1 minus theta X 2 this belongs to the set of all n cross

n positive semi definite matrices, ok.

So, if we take any convex combination theta times X 1 plus 1 minus theta times X 2 0

less than equal to theta less than equal to 1, the convex combination also belongs to the

set of positive semi definite matrices and therefore, S n plus is a convex set, ok. So,

implies; so, this implies S n plus equals a convex set. And in fact, this is a convex cone it

is not just a convex set, you can show that this is a convex cone. The definition of a

convex cone is something that very simple if X 1 bar similar to the convex set X 1 bar

comma X 2 bar belong to S, if this implies theta 1 X 1 bar plus theta 2, X 2 bar also

belong to S for any theta 1 comma theta 2 both greater than equal to 0.

Remember, there is no restriction of theta 1 plus theta 2 equal to 1 that restriction is there

both in convex and in affine, right. So, if you relax that restriction if this holds true for

any theta 1 theta 2 greater than or equal to 0 such a set is known as a convex cone. So, if

you look at this definition any convex cone is also called a convex set because if theta X

bar theta X theta times X 1 bar plus 1 minus theta times X 2 bar belongs to S, correct,

that is if theta 1 X 1 bar plus 1 minus theta 1 plus theta 2, X 2 bar belongs to S.
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Then, I can simply set theta 1 equals theta, theta 2 equals 1 minus theta and for 0 less

than equal to theta less than equal to 1, now theta 1 and theta 2 are both greater than

equal to 0. This implies that theta X 1 bar theta X 1 bar plus 1 minus theta X 2 bar also

belongs to S, which implies it is a convex sets. So, what this means is any convex cone is

also a convex set. So, convex set is a special is a subclass of convex cones, ok.

So, implies the convex set is also a convex cone I am sorry a convex cone is also a

convex set, but not the other way around not every convex set is a convex cone, alright.

So, every; so, the set of positive semi definite matrices is a convex cone it is known as a

convex cone for this particular reason not just a convex set, but it is a convex cone.
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Because, if you take any theta 1 it is not difficult to see any theta 1 X 1 plus theta 2 X 2,

where X 1 and X 2 are both positive semi definite you perform Z bar transpose Z bar you

have theta 1 Z bar transpose X 1 into Z bar plus theta 2 Z bar transpose X 2 into Z bar.

Now, again this is greater than or equal to 0 this is greater or equal to 0, theta 1 theta 2

greater than equal to 0 by assumption implies this is greater than equal to 0, implies

again this theta 1 times X 1 plus theta 2 times X 2 belongs to the set S n plus implies S n

plus is a cone, implies the set S n plus that is the set of all n cross n symmetric positive

semi definite matrices is a cone, ok.

And, therefore, anyway for our purposes right it is important to remember that the set of

positive semi definite matrices is a convex cone more importantly it is a convex set, ok.

That is, we take the convex combination of any two positive semi definite matrices it is

also in turn a positive semi definite matrix.
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Now, PSD Positive Semi Definite matrices are very important in signal processing and

communication as well. So, if you look at PSD matrices so, the set of all positive semi

definite matrices these have a lot of applications these have arise very frequently these

arise very frequently in signal processing and communication and for instance a simple

application can be demonstrated as follows.

Let us consider a simple application of this concept of positive semi definite matrix. For

instance let us consider a signal vector let us consider a discrete signal vector given as

follows.
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Given as x bar equals this is a vector of samples or you can say also symbols x 1, x 2, x n

of size n, ok. So, this is a signal vector can arise in any scenario, ok. This is a; and let us

further consider that this to be a random signal vector. Let us say this is a random signal

n dimensional random signal vector with average value that is we look at this mean.

(Refer Slide Time: 13:35)

 That is if you look at the mean of x mu bar of x is the expected value of x bar is equal to

0 which means this  is  a zero mean signal,  ok,  not important,  but  just  for let  us say



convenience of analysis we are setting this to be also a zero mean signal. Now, this can

arise in several scenarios. For instance, again let us go back to our multi antenna system.

(Refer Slide Time: 13:59)

Which you must now be very familiar with if you look at your multiple antenna system,

let us say we have in this case a set of multiple transmit antenna which are transmitting

the signal, ok. So this is your transmitter and let us say in the wireless communication

system your transmitting symbols x 1, x 2. So, let us say you have l or let us say you

have n transmit antennas. So, number of transmit antennas equals n number of transmit

antennas equals n and then let us say the transmits symbols are given by x 1, x 2, x n, ok.

So, we have n symbols x 1, x 2, x n; x 1 is transmitted from the first transmitter antenna

x 2 is transmitted from the second transmitter antenna so on, x n is transmitted from the

nth transmitter antenna. So, therefore, x bar also denotes the transmit vector or the vector

of transmit signals that is we have x bar equals x 1, x 2, x n this is the vector of transmit

symbols which is also known as the transmit vector, ok.
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So, you have x bar which is equal to x 1, x 2, x n this is your vector of transmitted

symbols  from the multiple  transmit  antennas  this  can  also be called  as  the transmit,

vector  of  transmit  symbols  from  the  multiple  transmit  antennas.  So,  these  are  the

symbols  transmitted  from  the  n  transmit  antennas.  These  are  the  symbols  that  are

transmitted  these  are  the  symbols  that  are  transmitted  from  the  multiple  transmit

antennas.
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So, the transmit covariance is given as that is if we denote the transmit covariance by this

matrix or we can also call this is as a covariance matrix of the transmit vector x bar that

is expected value of x bar minus mu bar x into x bar minus mu bar x transpose, this is a

expression for the covariance matrix.

(Refer Slide Time: 17:14)

Now, in this case we already seen mu bar x that is the mean is 0. So, this is basically 0, 0.

So, this is your expected value of x bar, x bar transpose and this is termed as this is

denoted as I already said this R x this is also termed as the covariance matrix of x bar.

This is the covariance matrix of transmit of the transmit vector x bar or they simply also

known  in  practice  and  frequently  in  literature  or  research  as  simply  the  transmit

covariance,  ok.  So,  this  is  also  simply  known  as  the  transmit  covariance  which  is

expected value of x bar x bar transpose.
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 And, we can show that any such covariance matrix that is R x is positive semi definite it

can be shown very easily. In fact, we will do just that that this transmit covariance matrix

which arise frequently this is a positive semi definite matrix. So, this is a PSD matrix, ok.

So, this is a very important property of which arises very frequently that is positive semi

definiteness and one of the most important types of matrices that we are going to see are

basically the covariance matrices of these random vectors. And, every such covariance

matrix  for  instance  the  transmit  covariance  matrix  which  is  the  covariance  of  the

transmitted vector is a positive semi definite matrix this can be shown simply as follows.
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So, we want to show that R x is the transmit covariance is a positive semi definite matrix.

So, we perform Z bar transpose R x Z bar we have to show this is greater than equal to 0.

So, this is equal to Z bar transpose expected value of x bar x bar transpose in into Z bar

which is now taking the Z bar inside the expected value. So, we have Z bar transpose x

bar times x bar transpose Z bar which is basically expected value of you can see this is Z

bar transpose x bar times Z bar transpose x bar transpose.

Now, you can see this Z bar transpose x bar is a scalar quantity ok, transpose of a vector

times another  vector  so,  this  is  a scalar  quantity. This implies  Z bar transpose x bar

equals Z bar transpose x bar transpose, because for a scalar quantity the transpose that is

when the quantity simply a number real number right the transpose of the quantity is

itself.
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Therefore,  this  is simply equal to expected value of Z bar transpose x bar into itself

which is basically Z bar transpose x bar square and this is the expected average value of

the positive quantity so, this is greater than equal to 0. So, this because Z bar transpose x

bar square is always greater than equal to 0. So, we take it is mean the expected value

that is also going to be always greater than equal to 0 which means basically your Z bar

transpose R x Z bar is always greater than equal to 0, which implies that R x is a that is

the covariance matrix.  In fact,  for that matter any covariance matrix is positive semi

definite, ok.

So, that completes basically the proof. This shows that the covariance matrix, if I not just

the transmit covariance, but the receive covariance or any covariance matrix of a random

vector is a positive semi definite matrix and covariance matrix has an important role to

play.
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In fact, the covariance matrix is related to the transmit power of the signal. It is a very

important property that is if you look at the covariance matrix, just expand it a little bits

to give you a better idea. So, this is if you write this as expected value of x 1, x 2 up to x

n times x 1, x 2 up to x n this is equal to expected value of x 1 square x 1, x 2, x 1, x 2, x

2 square and so on.

And, now if you look at the trace of this, now trace implies the sum of the diagonal

elements, correct.
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And, so if you look at the trace so, this is your basically your R x that is your covariance

matrix, ok. So, if you look at the trace of R x that is equal to the remember trace of a

square matrix is the sum of the diagonal elements.

(Refer Slide Time: 23:27)

That  will  be  equal  to  expected  value  of  the  diagonal  elements  are  x  1  square  plus

expected value of x 2 square plus so on plus expected value of x n square and this is

nothing, but the power of each symbol expected value of x i square is the power of

symbol x i square. So, this is basically total transmit power total.

So, the trace of the covariance matrix is nothing, but the total transmit power and that has

to be less than or equal to the maximum transmit power at the transmitter. Therefore, we

will  have  this  constrained  in  a  practical  communication  system.  We will  have  the

constraint that is if you look at the trace of R x that is less than or equal to P T. Let us

denote the maximum transmit power by P T. So, this is an alternative way of writing the

transmit power constraint this is the maximum transmit power.
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 And, this is basically your trace of R x so, this is the total transmit power. So, we have

that total transmit power is less than or equal to the total transmit power is less than or

equal  to  the  maximum  possible  transmit  power.  So,  this  covariance  matrix,  alright

prominent role to play in wireless communications in fact, we will frequently encounter

this  notion  of  transmit  covariance,  receive  covariance  matrices  and  so  on  or  the

interference covariance matrix and so on and all has to do with the power of a particular

signal, alright. It gives an indication of what is basically the power of the signal which is

the indeed a random vector, ok, alright.
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And, let us now move on to another important concept which is explore the properties of

convex sets. So, you want to also explore this notion of properties of convex sets or

basically operations that preserve convexity or basically you can also think of this as

operations that can be performed on convex sets that preserve the convexity.

Various operations  that can be performed on convex sets that  preserve the convexity

various operations that can be performed on convex sets that preserve convexity. Now,

the first property in this is very simple.

(Refer Slide Time: 26:41)

First property is that intersection preserves convexity that is we look at the intersection

of two convex sets the result is convex. The intersection preserves convexity. What this

implies is that if S 1 is a convex set and S 2 is a convex sets both S 1 and S 2 are convex

set.  In  fact,  what  you  can  see  is  S  1,  intersection  is  S  2  is  also  convex  that  is  in

intersection. In fact, this can be extended to any arbitrary number of sets, that is, we take

convex set if each set is convex, then the intersection of all these sets is also convex, that

is other interesting property and also very simple to verify you can also prove it formally.
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For instance you take two circles look at the intersection region this looks nothing like a

circle, but yet you can see that this is a convex set that is if you take any two points

beyond the  line.  So,  this  intersection  so,  the  two circular  regions  are  convex so the

intersection is also the intersection of these two circles is also convex, ok.

And, we already seen an example in this regard that is a intersection of hyperplanes and

half spaces is also convex.
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For instance,  if  you look at  the intersection  of hyperplanes  and half  spaces  are  also

convex. In fact, each hyperplane is convex, half space is convex, the intersection of this

is  convex.  In fact,  that  has  a  special  name this  is  termed as  the polyhedron,  we are

already  seen  this,  ok.  So,  this  intersection  of  hyperplanes  and  half  spaces  which  is

convex has a special name it is termed as a polyhedron, alright.

We have  looked at  several  interesting  aspects  first  we have  looked  at  positive  semi

definite  matrices,  verified  that  the  set  of  positive  symmetric  positive  semi  definite

matrices is a convex set and we also started looking at the properties of convex sets. We

will continue this discussion further in the subsequent modules.

Thank you very much.


