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Ellipsoid and its Practical Applications: Uncertainty Modeling for Channel State

Information

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking  at  convex  sets,  let  us  continue  our  discussion  by  looking  at  another  very

important convex set this is the ellipse or the ellipsoid, alright.
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So,  we  want  to  look  at  the  ellipse  or  also  in  n  dimension  also  on  ellipsoid  or  an

ellipsoidal region, alright. And, an ellipse as you know from knowledge of a high school

is look something like this and it is typically described by the equation. We are going to

come to the general model in a little bit, but first look at a very simple equation for an

ellipse described by the equation x square by a square plus y square by b square equals 1.

So, this is an ellipse. Well, this is the equation of the ellipse and the interior of the ellipse

including the boundary is described by this inequality that is x square by a square plus y

square by b square equals 1, this describes the interior of the ellipse. 
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Now, this can be simplified as follows to get the general expression for an ellipse or an

ellipsoidal region. I can write this as well, let us write this also or let us write this instead

of y square by b square let us write this as a x 1 square by a square plus x 2 square by b

square is less than or equal to 1, ok, where x 1 and x 2.

So, x 1 is denoting your conventional x coordinate and x 2 is denoting your conventional

y coordinate, and now I can write this as. So, I can denote this by vector x bar equals x 1

and x 2, x 1, x 2, two components. So, this will help me generalize it to n dimensions.

So, this will be x 1, x 2 times 1 over a, 0, 1 over b. In fact, let me just write one more

step I can write this as 1 over a square, 1 over b square times x 1, x 2 less than or equal to

1, writing this in vector and matrix notation.
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So, this implies we have x 1, x 2 times 1 over a, 0, 0, 1 over b into the matrix itself

because it is a diagonal matrix it to itself will give me 1 over a square or 1 over a square

and 1 over b square, 1 over a, 0, 0, 1 over b into x 1, x 2; well this is less than or equal to

this is less than or equal to 1, ok. And, this you can see now this is basically nothing, but

transpose of the vector x bar.
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So, this is x bar transpose, this is the vector x bar and you can see if I call this matrix as

A inverse, remember I can define A as the matrix diagonal matrix A small a and b on the



diagonal. So, this is A inverse and I can write this as a inverse transpose because this is a

diagonal  matrix,  the  matrix  is  equal  to  its  transpose.  So,  A inverse  and  A inverse

transpose. So, I can simplify this now interestingly as x bar transpose A inverse transpose

into A inverse into x bar less than or equal to A inverse into x bar less than or equal to 1.

Remember this is our matrix A, that is a diagonal matrix with a and b on the diagonal.

(Refer Slide Time: 05:15)

And, this implies and of course, you can see that this implies A inverse equals simply 1

over a, 0, 0, 1 over b, ok. Now, the above inequality implies now, I can write this as

follows: I can write this as A inverse x bar transpose into A inverse x bar less than or

equal to 1 and now, you can clearly see the vector transpose itself is nothing, but the

norm of the vectors vector space, that is, if u bar is a vector we have already seen that u

bar transpose u bar is basically norm u bar square.

So, I can write this now very interestingly as norm A inverse x bar square less than or

equal to 1 that implies A inverse x bar is norm of A inverse x bar is less than or equal to

less than or equal to 1 and this is the equation of ellipse equation of ellipse above.
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And, now you can generalize as you know ellipsoid by considering in n dimensional

vector  so,  alright.  So,  you  can  generalize  this  n  dimensions  by  considering  by

considering n n dimensional vector x bar. So, as you consider instead of x 1, x 2 if you

consider a n dimensional vector x 1, x 2 up to x n norm A inverse x bar less than or equal

to  norm  A inverse  x  bar  less  than  or  equal  to  1,  this  becomes  an  ellipsoid,  an  n

dimensional ellipsoid, ok. Generalize this to n dimensions, so, that becomes an ellipsoid,

in n dimensions. 
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And, now the alternative representation of an ellipse or an ellipsoid now the alternative

representation similar to that of a norm ball can be derived as follows. Well, we have

norm A inverse x bar is less than or equal to 1 implies I can set A inverse x bar as a

vector u bar with norm u bar less than or equal to 1 that implies x bar equals A times u

bar with norm u bar less than or equal to 1. Now, this is for centre as origin ellipse with

remember this equation here we have started with this is a centre has centre is origin. 

 Now, if centre is not the origin then I can simply modify this to include the appropriate

centre as x bar equals a times u bar plus x bar say. So, this is the centre of the ellipse or

the ellipsoid this is the centre of the ellipsoidal region, ok.
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And  therefore,  the  ellipsoid  can  now  be  represented  as  the  ellipsoid  with  the

corresponding to matrix A and centre x c bar is the set of all vectors x bar x c bar plus a u

bar such that norm of u bar is less than or equal to 1, this is the alternative representation

of  the  ellipsoidal  region.  This  is  alternative  representation  of  the  ellipsoidal  region,

alright ellipsoidal region corresponding to a matrix A and the centre x bar c, ok.

Similar to the previous cases let us look at a practical application of this. So, another

interesting one of the aspects of this course is also look at is to also look at a practical

applications of these concepts, is to also look at a practical application. 
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Again, we will look at a multi antenna wireless system. Let us consider a multi antenna

wireless system again similar to what we have seen before. Remember, multi antenna

wireless system basically has multiple antennas to over improved performance of such

system. So, I have multiple antennas and corresponding to this multiple antennas I have

multiple channel coefficients h 1, h 2 to h L. So, these are the L antennas. So, these are

let us say L antennas. So, this is your receiver, in the wireless communication system we

have the L antennas. So, h 1, h 2, h L are the channel coefficients.

Now, these channel coefficients also in wireless communication systems the knowledge

of these channel coefficient, this is also termed as channel state information alright. So,

the channel coefficient characterize the channel state and knowledge of this channel that

is knowing this channel coefficients, having the values of these channel coefficients is

also termed as channel state information in the wireless communication system. So, the

knowledge of these channel coefficients this is also termed as this is a frequent term, this

is termed as channel state information, ok. Knowledge of these channel coefficients is

termed as channel state information now this knowledge is important.

Now, to develop enhanced signal processing scheme we need knowledge of this channel

coefficients or we need the channel state information at the receiver to develop improved

or to basically develop schemes that yield improved performance after signal processing

at the receiver, ok.
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So,  this  knowledge  of  CSI  knowledge  of  CSI  is  required  for  accurate  performance

improved performance; however, frequently the exact. So, frequently the exact channel

state information that is frequently the exact channel state information is not known in,

this is not known in practice. Now, what is known because remember these channel state

coefficients have to be estimated and whenever you estimate them there is going to be an

estimation error. 

So, only approximate channel values of the channel state channel state information or

approximate values of these channel coefficients are known, that is, the corresponding to

the  approximate  values  or  the  estimates  of  these  channel  coefficients  are  frequently

known in practice, ok.
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So,  only  the  estimates  exact  CSI  not  known  only  estimates  only  the  estimates  or

basically,  you can  think  of  these  also  approximate  values  only  estimates  of  channel

coefficients or CSI or CSI is known. This implies that there is uncertainty in the CSI,

implies this is termed as uncertainty CSI uncertainty this is uncertainty in the CSI arising

from the estimation errors. There is uncertainty in the channel state information.

(Refer Slide Time: 16:38)

So,  we  have  this  estimate.  So,  we  have  these  true  channel  coefficients.  The  true

underlying  channel  coefficients,  these  are  not  known and  what  are  known are  there



estimates that are denoted by this hats h 1 hat, h 2 hat, up to h L hat. These are the these

are the estimates these are the estimates of the channel coefficients, and therefore, we

have our true channel vector h bar this is h 1 hat h 2 hat up to h L, and this is your true

channel  vector  true channel vector meaning the actual  channel vector in the wireless

system.
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And, you have the estimated channel vector h hat which is equal to comprises of the

estimates  and this  is  the true CSI or what is  also known as perfect  CSI.  This is  the

estimated channel coefficient vector which is also known as this is the estimated channel

vector. This is also termed as the imperfect CSI, ok. This is all the, this is known as

imperfect CSI. Now, we know that this imperfect CSI is close to the actual CSI that is h

hat the estimate is close to h bar, but it is not exactly equal to h bar, ok.
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So, h hat we know is approximately equal to h bar, but h hat is not exactly equal to h bar.

And, this is an important this is an important consideration in practice because in practice

the perfect channel state information is very difficult I mean estimating the underlying

channel  state  coefficients  without  that  is  with  100  percent  accuracy  without  any

estimation error is  impossible,  alright.  So, in all  practical  scenarios the channel  state

information or the channel coefficients are only approximately known, alright.

So, one has to characterize this phenomena this phenomenon of uncertainty in this in the

CSI has to be suitably characterize to design signal processing schemes that take into

account this uncertainty into CSI and yield improved performance, ok. So, we have to

have. So, h hat h hat h h hat is close to h bar, but h hat is not equal to h bar. So, how to

characterize this uncertainty? How do we characterize the important question now is how

to characterize now how to characterize this uncertainty?

And, therefore, what one can say is that h hat this estimate lies close to h bar or h bar the

true channel lies close to the estimate h hat, we can say that h bar h bar lies in a region of

uncertainty around h hat and this region is frequently modeled as an ellipsoid, ok. So,

what we have and this where the application of the ellipsoid comes in we say that if you

consider an ellipsoidal region with the known estimate as the centre then h bar the true

channel lies in a region uncertainty regions.



So, h bar equals the true channel it lies in a region of uncertainty around h hat which is

the estimate and this  uncertainty  region typically  modeled.  So, this  is  an uncertainty

region, this is typically modeled as an ellipsoid in n dimensions this is typically modeled

as an. This uncertainty region is typically modeled as an ellipsoid. So, we say that a true

channel vector true channel lies in an ellipsoid lies somewhere in an ellipsoid around h

hat.
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Now, obviously, if  the ellipsoid  is  large;  that  means,  the uncertainty  region is  large,

which means the estimation error is high, alright. Now, if the estimation error is low that

is a estimation process is very good then the ellipsoid will suitably small; that is you can

localize h bar to a much smaller region around h hat. So, if estimation is accurate that

imply that implies ellipsoid that is the size of ellipse is small, ok.

On other  hand, inaccurate  estimation  or poor estimation,  the estimation poor implies

ellipsoid is large. So, one can characterize the ellipsoid based on the estimation process

also, because estimation process what results in the estimation errors. If the estimation

errors is large then the uncertainty will be large so, the size of the ellipsoid will be large,

that is, there is a lot of uncertainty in where h bar can lie. If the estimation is of good

quality then naturally h bar will be close to h hat. So, the size of the ellipsoid will be

much smaller.



And, asymptotically you can see when the estimation error become 0, h bar the true

channel coincides with h hat, that is, for a large number of pilot symbols that is when the

SNR; SNR of estimation tends towards infinity alright. And therefore, now you have an

interesting model to characterize the true channel vector I can represent h bar as A times

u bar plus remember this ellipsoid has centre e which is nothing, but it h hat. So, this

forms your centre of the ellipsoid; h hat is centre of the uncertainty ellipsoid. So, h form.

So, h hat is nothing, but the centre of the uncertainty centre of the uncertainty ellipsoid,

ok.
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And, therefore, h bar belongs to this uncertainty ellipsoid which is given as A u bar plus

h hat such that norm u bar is less than or equal to 1, and this is termed as I already said

this is termed as on the uncertainty ellipsoid. This is termed as for this practical scenario

this is termed as the uncertainty ellipsoid.
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This  is  termed  as  uncertainty  ellipsoid  and  now,  signal  processing  techniques  that

concerned this that consider this uncertainty. Signal processing ellipsoid that consider

uncertainty are termed as robust. These are termed as a robust since they are not sensitive

to  the  uncertainty  in  the  channel  state  information  as  they  are  not  sensitive  or  less

sensitive, as they are less sensitive to uncertainty in the channel state information, or they

are not sensitive to errors; not sensitive to estimation errors as they are not sensitive to

estimation errors, alright.

So,  an  interesting  application  of  this  ellipsoid  or  ellipsoidal  region  in  wireless

communication or for that matter signal processing and various other applications is the

following. Several quintiles have to be estimated such as, the channel coefficients or

even a signal processing alright and underlying filter has to be estimated, alright. So, the

true coefficients we do not know where that what the true coefficients are, but we know

that  they  lie  close  to  the  estimated  values.  So,  these  can  be  considered  to  lie  in  an

ellipsoid  is  region around their  corresponding around the respective estimated values

alright and that ellipsoidal region is known as the uncertainty ellipsoid in the context of

wireless communication this arises because there is uncertainty in the CSI channel state

information or the channel coefficients, alright.

So, let us stop here and consider other aspects in the subsequent modules.

Thank you very much.


	
	

