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Lecture – 13
Norm Ball and its Practical Applications: Multiple Antenna Beamforming

Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at the basics of convex optimization. In particular, we have looked at the concept

of convex set hyper planes and hyper spaces and we are looking at applications of these

concepts in wireless communication, that is practical applications of this concept, alright.

So, today, let us look at another application of the same concept that is in Multi Antenna

Beamforming, ok.

(Refer Slide Time: 00:41)

So, what I want to look at is I want to introduce another application for of the concept of

hyper planes and half spaces and this is in the context of multi antenna beam forming.

And, what happens in multi antenna beam forming is basically you have receiver with

multiple  antennas,  correct  and  let  us  say  this  is  a  receiver,  the  wireless  receiver  in

wireless communication system, and you have multiple  antennas  each of these is  an

antenna and you have the signals that are coming with various channel coefficients, ok.

So, you have the various channel coefficients corresponding to the antennas 1, 2 up to let

us say L. So, there are total of L antennas.



(Refer Slide Time: 02:21)

And, this multi antenna system what we have is we have this channel coefficients h 1, h

2, up to h 1, h 2 up to h L, these are the channel coefficients. These are also known as the

feeding channel coefficients because the wireless channel is typically a fading channel

that  is  received  power  of  as  a  channel  is  varying  with  time,  it  is  increasing  and

decreasing.  So,  the  wireless  channel  coefficients  are  also  known  as  fading  channel

coefficients, and h 1, h 2, h L denote the L channel coefficients corresponding to the L

antennas in this multi antenna receiver.

And, this is also known as a single input multiple output or a SIMO receiver, ok. So, this

is also typically known as such a system is also known as a SIMO or a single input

multiple  output in the sense we have multiple  antennas.  Single input  multiple  output

system and let us now assume the combining it h 1, h 2, h L are the channel coefficients.
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What we are going to do is we are going to combine the signals with weights W 1, W 2,

W L, so, W 1, W 2, W L you can think of these as the weights of the combiner; these are

the weights of the combiner, these are the weights of combiner or you can also think of

this as a beam former, weights of the combiner or also beam former and what we are

performing is we would weigh the received signals and add them.

So, we are performing a linear combination of the signals and therefore, if you look at

the effective gain of the signal gain across at the output of the combiner that will be the

weights times the corresponding channel coefficient and the sum. So, you can think of

this as the effective you can think of this as the effective gain what the effective signal

gain, effective signal gain at the output of the combiner. And, to normalize this effective

signal gain what we do is we set this equal to 1. So, typically what we have what this

implies  is that we want to design a system such that this effective signal gain at the

output of the combiner that is we look at the output of the combiner the effective signal

gain is unity, alright.

So, you like to design such a combiner, this is typically a constraint in multiple antenna

processing one of the types  of constraints  that  can be employed in multiple  antenna

processing, ok. So, what we have is this can be written as h 1, h 2, up to h L that is the

channel coefficients.
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This is the vector h bar transpose times the vector if you look at this W 1, W 2 W L this

is equal to 1 you can call this as the beam forming vector or this is basically also your

receive beam former. So, h bar transpose W bar where W bar is a vector of combining

weights or the combiner or the receive beam former is 1 to ensure unity gain.

(Refer Slide Time: 06:54)

Which basically implies h bar transpose W bar equals 1 and this you can see now is

nothing, but a hyper plane constraint, ok. So, this is a practical application of the concept

of  hyper  plane in  a  wireless  communications  which  says  that  all  this  beam forming



vectors W bar lie on this hyper plane described by h bar transpose W bar equals 1. This is

the hyperplane constraint and what is this is doing is basically this is ensuring unity this

is ensuring unity gain for the desired user or desired signal, that is what your doing is

your  ensuring that  the gain signal  gain corresponding to  a  particular  desired user  or

signal is unity at the output of the combiner.

So, this signal is unity and then what you can do is you can either suppress, you can

typically either suppress the noise or suppress the interfering signals of the interfering

users. So, this is typically constraint that is employed in multi antenna signal processing

in a wireless communication system, alright. So, let us so, we have seen the definition

the notions of hyperplanes and half spaces. Let us know move on to different key type or

different types of convex sets in particular let us look at spherical balls or the norm what

are also known as norm balls, ok.
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So, the next type of convex set we want to look at is that of a norm ball or basically a

Euclidean ball. So, what we want to look at is this constraint of a norm ball in particular

a Euclidean ball. And, if you look at this, for instance you look at ball in 2 dimensions is

basically a circle with a certain centre let us say at the origin 0 and this is has a radius r,

then if you look at any point in the interior of the circle x bar, if you look at norm that is

the length of this vector which is norm of x bar that has to naturally be less than or equal

to r which is the radius, ok.



So, this describes the interior of a circle which is nothing, but a 2 dimensional ball or a

sphere interior of circle of radius equal to r and with center origin.

(Refer Slide Time: 10:36)

Now, if the center is not the origin then you can simply shifted to origin by considering

norm x bar minus x c bar less than or equal to r this is the general this is a circle or this is

the circle or a sphere. In fact, you can if x bar is n dimensional vector if you consider as

n dimensional vector, this is the sphere or a ball with center at x c bar, ok.

So, this describes interior of n dimensional ball with centre x c bar and radius r, and this

can be seen to be convex and that can be briefly justified as follows that is this region is

convex  for  sake  of  simplicity,  let  us  consider  simply  the  ball  with  centre  at  origin.

Remember if the ball with centre at origin is convex then naturally if you shift it to any

centre x c bar it is also going to be convex because shifting does not affect the convexity,

alright. So, if norm x bar less than or equal to r is convex then norm x bar minus x c bar

less than equal to r is also convex because a translation does not affect the convexity of

the object convexity of the region, or the set, ok.

And, consider two points to verify this simply consider two points x 1 bar. So, we have

to demonstrate that given any two points x 1 bar x 2 bar their convex combination lies in

the set.
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Consider x 1 bar, x 2 bar let us denote this set by B, belong to B. Then what we have is

we have norm by definition since they belong to the interior of the ball norm x 1 bar less

than equal to r, norm x 2 bar less than or equal to r. Now, let us consider the convex

combination we have theta times norm theta times x 1 bar plus 1 minus theta times x 2

bar, we have to show that the norm of this is less than equal to r. So, that this also lies in

the interior of the ball.

Now, you can readily see what needs to be an first we can use the triangle inequality that

is norm A bar plus B norm of A bar plus B bar is less than equal to norm A bar plus norm

B bar. So, that gives me this is less than equal to theta times x 1 bar norm plus norm of 1

minus theta times x 2 bar.
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Now, remember theta is positive because this is the convex combination. So, we have 0

less than equal to theta less than or equal to 1 which basically implies that theta coma 1

minus theta are both greater than equal to 0. So, a norm of theta times x 1 bar is theta

times norm of x 1 bar because theta is greater than or equal to 0 plus 1 minus theta times

norm of x 2 bar since, 1 minus theta is also greater than equal to 0. Now, observe that

norm x 1 bar norm x 2 bar are less than or equal to r. Remember, both these quantities lie

in the interior of the ball therefore, they are less than or equal to r. So, this is less than or

equal to theta times r plus 1 minus theta times r which is nothing but r, ok.
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So, that implies you have norm of theta times x 1 bar plus 1 minus theta times x 2 bar

less than or equal to r implies theta times x 1 bar plus 1 minus theta times x 2 bar less

than equal to r which implies this is essentially belongs to the set B, which implies B is

convex, ok. That completes the proof, and that is obvious what we have been able to

show that if x 1 bar for any two points x 1 bar, x 2 bar belong to the ball their convex

combinations, all their convex combination also belong to the ball. Therefore, the norm

ball is convex, ok.
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And,  this  norm ball  now remember  another  equivalent  so,  we want  to  a  de another

equivalent way an interesting way to represent this is now we can represent this norm

ball as B of x c bar comma r. So, this denotes a ball for norm ball its center equal to x bar

c, I am sorry, this is not r bar, but this is r which is the radius equal to r. So, this is the

norm  ball  another  equivalent  way  to  represent  the  norm  ball  that  is  equivalent

representation is as follows.

The equivalent representation of the norm ball is as follows. that would be remember

norm of x bar minus x c bar equal to r and this implies, you can write this as x bar minus

x c bar is some is r times some vector u, correct? Where, norm of u bar is less than or

equal to 1. For instance I can always write this if you look at this x bar, I can always

write this x bar equals r times some vector u bar, correct where u bar is unit vector in this



direction or u bar norm of u bar is less than or equal to 1, ok. So, the norm of u bar is less

than or equal to 1, ok.

So, what that means is, that is what this and therefore, now you can see and you can

write readily verify this. This implies that norm of x bar minus x c bar equals norm of r

of u bar, since r is positive this is r times norm of u bar and norm u bar less than or equal

to 1 which means this is less than or equal to 1, which is the same thing which is setting

the same thing in a different way that is your finding a vector u bar and which is norm

less than or equal to 1 and your saying that x bar minus x c bar equals r times u bar. And,

this is true for any such vector you bar since this norm of x bar minus x c bar less than

equal to r. So, such point x c x bar will lie in the interior of the ball.

(Refer Slide Time: 19:19)

Which implies now, that if you look at x bar equals x bar c plus r times u bar such that

norm u bar less than equal to 1, this lies in the, well this lies in the interior of this interior

of the ball this implies that I can represent the ball with center x c bar comma radius r

also in the following form that is equal to the set of all vectors x bar c plus r u bar such

that norm u bar is less than or equal to.

So, this is an alternate representation of the norm ball or this is basically an alternative

representation  of  the  norm ball.  This  is  alternative  representation  of  the  norm ball,

alright. That is x bar x c bar that is center plus r radius times u bar, where u bar is any

vector  such that  norm u bar  is  less than or equal  to 1,  ok.  So, this  is  an alternative



representation which is very convenient to represent often times represent the norm ball

ok, alright.
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So, let us look at the another application similar to if your seen for the hyper planes and

half spaces. Let us again look at the application of the concept of norm ball for wireless

application of the concept of norm ball  in a wireless system and this can be seen as

follows.

For instance, again let us go back to our multi antenna beamforming problem and we

again have the different signals. So, this is again your multi antenna receiver and these

are antennas 1, 2 up to antennas L and which we are combining using our beamforming

using the weights W 1, W 2 up to W L.
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Remember or recall that these are the beamforming weights; these are the beamforming

weights.

(Refer Slide Time: 23:04)

And, what we will ensure that if you look at the energy of the beam former that is W 1

square plus W 2 square because this is also this also influences the power output power

of the combiner. So, we restrict the energy of the beam former which is equal to the

energy of the beam former and often also called the power of the beam former because

this is what is applied at every time instant energy slash power of beam former.



Now, in any wireless communication system this has to be should be restricted because

this influences the power of the signal at the output of the beam former. If the energy of

the beam former unbounded then the power of the output signal can also be unbounded

therefore, to ensure stable beam former restrict this energy of the beam former typically

to unity, alright. So, in any wireless communication system energy of the beam former

has to be limited. Let us call this as the power because that is typically the nomenclature

that is used. The power of the beam former has to be re represented limited.

Now, if you can look at this, this is nothing, but norm of W bar square. This is norm of W

bar square. Typically, this is less set less than or equal to unity. So, we have the constraint

norm of W bar square less than or equal to unity which implies that if you look at this,

this implies that norm of W bar has to be less than equal to unity and this is nothing, but

a norm ball constraint.
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So, this is the beam former power constraint which is a norm ball constraint norm of W

bar that is constraints the set of all beam formers to a norm ball with radius 1, interior of

a norm ball with radius 1. So, this is normal ball constraint. So, this is the constraint on

the beam former power constraint. This can also be thought of as the this can also be

thought of as the beam former power constraint which is basically nothing, but a norm

ball or a Euclidean ball constraint, alright. So, that is an interesting application of the



concept of a norm ball to a wireless communication scenario to design the constraint for

a receive beam former, alright.

So, we have seen various other concepts in this module namely that of the norm ball or

the Euclidian ball and its application in the context of a wireless communication system.

So, we will stop here and continue in the subsequent modules.

Thank you very much.


