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Hello welcome to another module in this massive open online course. So, we are looking

at the building blocks and the various fundamental definitions required to develop the

optimization techniques and we have previously looked at the definition notion of the

convex set the convex combination of the set of points and also the concept of a convex

hull. So, let us continue this discussion by look at looking at something slightly different

today that is the definition of an affine set.
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So, what you want to look at is the notion or the you want to learn the concept of an

affine set. And this is very simple the affine set in the previous module we have seen the

notion of a convex set. Now what an affine set is that is if you consider any two points x

1  bar  and  x  2  bar  ok.  So,  similar  to  the  definition  of  convex  set  consider  two  n

dimensional points x1 bar comma x2 bar and now perform the combination theta x1 bar

plus  1 minus  theta  x2 bar,  but  the  theta  can take  and real  value  theta  can  take  any

remember in the convex for a convex combination we had restricted theta to lie between



0 and 1 however, in this case there is no such restriction and theta can take any real value

ok.
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And this is an important observe there is no restriction on theta. In fact, theta can take. In

fact,  theta  can  take  any  real  value  and  such  a  combination  now  this  is  an  affine

combination and basically you can say that for various values of theta this represent the

entire line represents the line through x 1 bar comma x 2 bar.

So,  previously  when  0  is  less  than  equal  to  theta  is  less  than  equal  to  1  it  simply

represented  the line segment  between x 1 bar  and x 2 bar. Now if  you remove that

restriction on theta, it represents the entire line that is any point on the line is captured by

this combination theta times x 1 bar plus1 minus theta times x 2 bar. Now if this belongs

to the set S whenever x 1 bar and x 2 bar belong to the set S that is the entire line all

right, entire line joining the points x 1 bar and x 2 bar belongs to the set S for any two

points x1 bar x2 bar belonging to the set S such a set is known as an affine set.
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That is set S tilde is affine if x 1 bar comma x 2 bar belongs to S tilde ok. Remember we

saw we seen this symbol belongs to S tilde implies theta times x1 bar plus 1 minus theta

times x2 bar also belongs to x tilde for all real values of theta, that is for any real value of

theta. That is for any two points, for any to given any two points in S tilde entire line

joining the two points entire line joining the two points the entire line joining the two

points lies in S lies in S tilde. 

And note that the affine set is convex and that you can note this is an interesting property

every affine set every affine set is convex correct. The reason is very simple because if it

contains the entire line joining the two points, naturally it contains the line segment that

is for any x1 bar x2 bar belonging to S tilde since it contains the entire line or if it is

affine, it naturally also contains the line segment all right.

So, the convex set is a special case of an affine set all right. So, every affine set is a is

also a convex. I am sorry affine set is a special case of a convex set all right. So, every

affine set is a convex set, but note that every convex set need not be an affine set all right

note that also, but all convex sets are not affine.
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All convex sets are not affine and that is very easy to see take a simple example for

instance if you consider a circle correct.

(Refer Slide Time: 06:51)

Which we saw yesterday is a convex set because if you took take any two points correct.

The line segment joining the two points which is contained, but if you extend that to

form the line the you can see that the entire line.

So, the line segment is contained. So, this is your S line segment is contained in S this is

these are your points x1 bar x2 bar the line segment belongs to the S , but the line does



not belong to S that is it does not the entire line does not belong to S it is a very simple

thing ok. So, every affine set is convex, but every convex set is not affine ok. So, these

are the, that these are the this is the interesting relation between affine sets and convex

sets ok. All right now let us look at some examples to understand these better examples.
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Examples of convex sets and affine, let us look at some examples of convex and affine

sets and consider a simple line for if simple example for instance; consider a simple line

in 2 dimensions the line let us say is given by the equation 2 x1 plus 3 x2 equal to 6 ok.

Now if you plot that line it looks something like this.
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For x1equals for x2 equals 0 x1 equals you can see this is 3 and when x1 equal to 0 x2

equals 2. So, if you plot the line that will look something like it will look something like

this ok.

So, this is the line 2 x1 plus 3 x2 equal to 6 and remember line is a trivial example of an

affine set correct because if you take any two points on the line all right if you take the

line as a set if you take any two points on the line and join the line correct. Naturally the

entire line, which is the same line belongs to that set all right. So, the line is a trivial

example. So, any line is a trivial example of an affine set ok. So, let us note that. So, this

line is affine line is affine and it is also convex because every affine set is convex the line

is also line is also convex.

Now, the  interesting  thing  occurs  when  you  look  at  these  regions  now  the  line  is

partitioning this plane into two regions if you look at this ok. Now this region is the

region 2 x1 plus 3 x2 greater than or equal to 6 and this region is the region 2 x1 plus 3

x2 is less than or equal to 6 and these regions are known as half spaces.
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So, the line divides the plane into two regions 2 x1 plus 3 x2 greater than or equal to six

or 2 x1 plus 3 x2 less than or equal to 6 and these are known as half spaces these are

known as half spaces ok. So, we have a line and the line divides the plane into two

regions. So, the line is convex and also affine. In fact, and it divides the plane into two

regions are half spaces and note that half spaces are only convex they are not affine ok.

So, these half spaces these are convex and these are not affine. So, a line is affine which

implies  it  is  also a  convex,  but  half  space is  only convex and not affine now if  we

generalize this. So, n dimensions in n dimensions one can consider an n dimensional

equation which is of the form a1 x 1 plus a 2 x 2 plus an xn equals b which implies if I

write it in vector notation that we are familiar with a one. 

I can write it as the row vector a one times the column vector x1 x2 xn equals b which

implies now I can denote this by a bar transpose and this by x bar this I can denote by x

bar.  So,  I  can  write  this  as  a  bar  transpose  x  bar  equals  b  and  this  equation  in  n

dimensions this represents what is known as a hyper plane in n dimensions this is a hyper

plane which is in fact, you can see it is affine ok.
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So, a bar transpose x bar equals b this is a hyper plane a general equation for a hyper

plane this is an equation for a hyper plane and you can see that this is affine a hyper

plane is affine which also implies that this is convex as well right for instance if x1 bar

comma x2 bar  belong to  the  set  S  that  is  you can  quickly  verify  this  that  is  a  bar

transpose x1 bar equals b a bar transpose x2 bar equals b this.

(Refer Slide Time: 15:05)

Now, consider theta times x1 bar plus 1 minus theta times x 2 bar theta times x1 bar plus

1 minus theta times x2 bar this equals theta times a bar transpose x 1 bar plus 1 minus



theta times a bar transpose x2 bar which is theta times b plus 1 minus theta times b that is

equal to b note that there is no restriction on theta valid for any theta.

(Refer Slide Time: 15:51)

Element on R implies this as affine. If it is only valid for zero less than equal to theta less

than equal to 1 it is convex in this case there is no restriction on theta. So, this is affine.

So, you can see that hyper plane is an affine set, now this hyper plane divides the space

into 2 the n dimensional space into two regions a bar transpose x bar greater or equal to b

a bar transpose x bar less than equal to b these two regions are known as half spaces ok.

(Refer Slide Time: 16:28)



So, the hyper plane divides it into two regions correct a bar transpose x bar less than

equal to b. These are half spaces that are. In fact, the general equation of half space you

can always remember  represented  by  a  bar  transpose  x  bar  less  than  equal  to  b for

instance. Example you have 2 x1 plus 3 x2 less than equal to 6, you also have the other

half space that is 2 x1 plus 3 x2 greater than equal to 6, which basically implies minus 2

x1 minus you take the negative minus 2 x1 minus 3 x 2 less than or equal to 6.

So, the general equation of a half space which is of the form again a bar transpose x bar

less than or equal to b ok.
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So, the general equation of a half space. So, a bar transpose x bar less than equal to b is

the general  expression for general  representation of a  half  space ok.  Thus these half

planes this hyper planes and half spaces are complex therefore, the important thing to

realize here therefore, hyper planes and half spaces. Hyper planes are affine as well, but

for our purposes it is enough to note that hyper planes as well as half spaces are convex

ok. Hyper planes as well as half spaces are convex ok.

Now, what we want to do is we want to explore a practical application because remember

we want to also explore practical right. Applications of the concepts that we learn for

optimization let us look at the practical application let us look at one of the practical

applications of the concepts that we have just learned regarding convexity and how these



influence  practical  optimization  problems  that  are  arise  in  wireless  communications

scenarios ok.
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So, what we want to look at is we want to look at practical aspect practical application.

So, for instance consider a wireless system with multiple users. So, what you want to do

is  we want  to  start  by considering  a  wireless  system with multiple  users  consider  a

wireless system with multiple users and for instance let us say you have a base station

correct.
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And you are transmitting signals to multiple users this is let us say user 1, you have

another let us say user 2 somewhere and so on and so forth at some other point you have

user k, we are considering a downlink scenario with a base station is transmitting to

different users ok.

Now, let P 1 P1 denote the power to user 1, P 2 denote the power to user 2 so on and so

forth P k denote the power to user k ok. So, we have P 1 P i equals power of signal

power, allocated you can say power allocated to P i is the power allocated to user i by the

base station, P i is the power allocated by user i to the base station then, now we need

that. 

So, P 1 P 2 P k are the powers that are allocated to the different users 1 to k, but this total

power allocated to different users has to be less than or equal to correct the sum total of

the  powers  of  the  different  users  has  to  be  less  than  equal  to  the  total  power  the

maximum power of the base station available at the base station all right. So, that is the

constraint that we have in a practical wireless scenario.

(Refer Slide Time: 22:32).

So, the power that is allocated to the different users that is P 1 P 2 P k these are the

powers allocated to different users. These are the powers that are allocated to different

users. Now when we consider P 1 plus P 2 plus P k this has to be less than or equal to P

all right. So, the sum power of all the users sum of powers of all users has to be less than



or equal to P which is the total power of the base station so, that has the total base station

powers.
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So, the sum of the powers of all the users or basically if you look at sigma P i summation

P i i equal to 1 to k that has to be less than or equal to P. And you can see this constraint

is basically P 1 plus P 2 plus P k less than equal to P this is nothing, but half space

constraint because it is a linear combination of P 1 plus P 2 plus P k all right all right and

you can consider  the weighting coefficients  a  1 a 2 a  k  to  be unity that  is  one and

therefore, we have P 1 plus P 2 plus up to P k less than equal to p this. In fact, represents

a half space.

So, this is a very important constraint in wireless communication this is nothing, but a

half space. So, basically the set of all feasible powers possible powers that satisfy this

constraint,  lie in a half space that is the interesting interpretation that is that one can

make here all right. So, the set of all feasible powers in the wireless scenario this is an

important notions set of all feasible, feasible in the sense that satisfy the constraint. 

Set of all feasible powers lie in a half space the set of all feasible powers lie in a half

space. Now you can also have an equality power constraint, that is you do not want to

waste any power and you want to set the power of all the users equal to p that is P 1 plus

P 2 plus P k equal to P and this is an equality power constraint.
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That is you are less than or equal to by equal to. So, this is a equality this is an equality

power constraint and note that this represents the hyper plane so all the feasible powers

lie on a hyper plane represents a k dimensional. This represents a k dimensional hyper

plane all right.

So, we have this power constraint in a wireless communication system that can either

you have any equality that is a sum total of the powers of the different users is less than

or equal to P that is  the total  power of the base station.  That  is basically  half  space

constraint and when your equality power constraint that is sum total of powers of all the

users has to be equal to the power of the base station that basically, represents a hyper

plane  which means the set  of  all  feasible  powers  corresponds to  a  hyper plane  in  k

dimensional space all right.

So, this is an interesting practical perspective to the theoretical concepts of convex sets

and affine sets that we have just seen. And we will explore several more links between

the various theoretical concepts or the theoretical building blocks of optimization and it

is relation to practical applications in several fields as wireless communications be it

signal processing or so on. So, we will stop here and continue in the subsequent modules

Thank you very much.


