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Vectors and Matrices – Linear Independence and Rank

Hello. Welcome to this module in this massive open online course. So, let us start with

the  mathematical  preliminaries  that  are  required  to  understand  the  framework  of

optimization that is which form the basis of building the framework for optimization, the

various tools and techniques for optimization, ok.
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So, we want to start with the mathematical preliminaries, the notation and so on that we

are going to use frequently in our treatment of optimization in order to illustrate or in

order to basically describe the various concepts of optimization.

Now, the first thing that we are going to use the mathematical construct that we are going

to use is that of a vector, as you must all be familiar or vector x bar which is denoted by a

bar on the top of the quantity. So, this basically is, so let us start with the concept of

vectors and a vector is denoted by the quantities like this that is of the bar on the top. So,

this is basically a vector. So, vector x bar is an n dimensional object which contains n

components. These are the elements.



So, this is your, this is basically your n-dimensional, this is your n dimensional vector

contains n elements. This is an n dimensional vector.
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And now if these elements x 1, x 2, x n these belong to the real field that is these are real

numbers, then we say that this is an n dimensional real vector that is x bar belongs to the

set of n dimensional real vectors, all right. So, this is the this phase of n dimensional real

vectors.
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And, so what we have is, if you consider x bar now, x bar is the column vector and

therefore, x bar transpose we will similarly be a row vector. So, it will be a 1 cross n. So,

this is basically your row vector, x bar transpose. So, this so, x bar is a column vector or

basically n cross 1, has dimension n cross 1. Now x bar transpose, now, this you can see

this is a row vector which is of dimension 1 cross n. That is 1 row and n columns and

further, x bar transpose x bar, this is basically your x 1, x 2, x n, the row vector times the

product with the column vector x 1, x 2, x n.
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And you can see, this is basically equal to you can see this is x 1 square, say these are

real quantities x 2 square plus x n square which is also denoted by the norm square and

in fact, we will see this is a specification of norm, this is the l 2 norm. So, this is the

square of the so, this indicates the l 2 norm of the vector, where norm of x bar and this l 2

norm is the default.

So, this is the l 2 norm which is the default norm that we will use. So, if there is a known

of so, the norm is explicit or not specified explicitly, it is it will it indicates the l 2 norm,

all right. And l 2 norm of a vector is basically something that you are already be very

familiar with that is simply the length of the vector, length of a vector in n dimensional

space ok. So, norm x bar is simply something that you are very must be most of you

might be very familiar with that is square root of x 1 square plus x 2 square plus x n

square which is basically the length of the vector, all right.
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Now, on the other hand, now you have since real vector similarly, if x 1, x 2, x n belong

to the set of complex number. So, now, what we want to see is we want to see the notion

of a complex vector. So, a complex vector if x 1, x 2, x n are elements belong to C that is

these are complex numbers, then this implies that x bar, the vector x bar belongs to the

set of n dimensional complex vector C n that is, this is n dimensional, the space of n

dimensional the space of n dimensional complex vectors.
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Now, x  bar  Hermitian,  this  is  basically  equal  to  x  1  conjugate,  x  2  conjugate,  x  n

conjugate that is first you take that is when you take the Hermitian of a vector or matrix

in fact.

Now, he in this case you are taking the Hermitian of a vector, the column vector becomes

a  row vector  and you also in  addition  take  the  complex conjugate  of  each complex

element. So, that is basically your x bar Hermitian, all right. So, two steps; one is you

basically, perform row vector  plus the complex conjugate  of  the elements  and x bar

Hermitian into x bar is equal to x 1, x 2 conjugate, x n conjugate times x 1, x 2, x n and

this is equal to now the magnitude; look at this is x 1 conjugate into x 1, that is the

magnitude x 1 square plus magnitude x 2 square plus so on up to magnitude x n square

which is once again, this is equal to the norm. In fact, the l 2 norm of x bar square.
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You can also write a 2 in the subscript 2, indicate that is the l 2 norm.

And therefore, once again now you see that in this case the norm of a complex vector x

bar,  this  is  square  root  of  magnitude  x  1  square  plus  magnitude  x  2  square  plus

magnitude x n square. That is where we have replaced x i square with magnitude x i

square. In fact, this is a general definition that is magnitude x 1, magnitude x 2 square,

magnitudes plus magnitude x n square and square root of that quantity. This definition is

generalize, it works for both the real works for both the real as well as complex vectors

ok.



So, this in that sense, this is a general definition,.
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For real  number, you can simply replace  the magnitude  square by the square of  the

element.  So,  this  general  definition  for  real  and  this  is  general  definition  that  is

applicable both for real and complex vectors. Now, a special kind of a vector is obtained

as following that is x tilde equals x bar divided by the norm of x bar. That is you are

taking the vector x bar and dividing it by the by it is norm and that gives a unit norm

vector. So, in this vector x tilde is basically unit norm vector because one you can show

that the norm of x tilde is unity. So, this vector x tilde as an interesting property; x tilde is

a unit norm. So, x tilde is a unit norm vector and we can simply show that very easily as

follows.
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In fact, if you look at x tilde Hermitian x tilde that is x bar Hermitian divided by norm x

bar times, x bar divided by norm, x bar is basically x bar Hermitian x bar that is norm x

bar  square  divided  by  norm x  bar  square  which  is  1.  So,  this  implies  now x  tilde

Hermitian x tilde is nothing but norm x tilde square. So, this implies norm x tilde square

equals 1 that this implies norm of x tilde equals 1 ok. 

So, x tilde is basically unit norm vector. You can also say this is the unit norm vector in

the direction of x bar. So, if you think of this n dimensional vector x bar as representing a

particular direction in n dimensional space, the unit norm vector can think can be thought

of as a unit vector basically pointing in that direction, in n dimensional space. That is the

direction given by the vector x bar, ok. So, x bar and x tilde, both are a line except that x

tilde in this vector is a unit norm vector that is as it has norm equal to unity,.

Let us take a simple example to understand this.
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For instance, let us consider the vector x bar, let us consider this to be your x bar equals

the all 1 vector that is n dimensional n dimensional all 1 vector. Then, we have norm of x

bar equals square root of 1 square, that is 1 plus 1 plus 1, n times that is equal to square

root of n. In fact, norm x bar square remember, we are talking about l 2, norm x bar

square equals n.

And in fact, x tilde equals x bar divided by norm of x bar that is 1 over square root of n

into the vector that is one vector of all one. So, this is basically the corresponding unit

norm this  is  the  corresponding unit  norm vector,  all  right.  So,  that  is  basically  that

completes  a brief  summary right  of the properties  of the various aspects  the various

properties  of vectors  and most of you might  already be familiar  with many of these

aspects, but this presents brief summary and we will quickly refresh your memory and

remind you of several of these aspects,. So now, let us look at matrices.
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Once again, a brief review of various concepts in linear algebra and matrices. So, let us

consider m cross n matrix A. This implies A has m rows and n columns and you can

represent A as the matrix a 1 1, a 1 2 so on up to a 1 n; a 2 1, a 2 2 so on up to a 2 n and

the mth row is a m 1, a m 2 so on up to a m n. So, you can see there are m rows. So, there

are m rows and there are n columns. 
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And note that this quantity for instance, the i jth element, a i j equals the element in ith

row and the jth column. This is the element in the ith row and the jth column.



And, when the number of rows is equal to number of columns that is m equal n, then the

matrix A becomes a square matrix ok. So, if m equal to n, then the matrix A is a square

matrix that is when the number of rows is equal to the number of columns. Let us now

look at an important concept of the row space and column space. Now to first understand

this concept of a row space and column space of a matrix, you have to understand what

we mean by, what we mean by the space and what you mean by the rank of a set of

vectors.
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So, let us start with this notion of rank. So, let us consider vectors W bar, consider W bar

1, W bar 2 so on up to W bar m. This is a set of this is a set of m vectors. Then, now

these vectors are linearly independent. Now this is an important concept.

So, these are linearly independent, if there do not exists C 1, C 2 so on up to C m, not all

0 that is all of them cannot be 0, they do not exists C 1, C 2, C m not all 0 such that such

that C 1 W bar 1 plus C 2 W bar 2 plus so on plus C m W bar m equals 0. That is there

cannot be set of constant C 1, C 2, C m such that C 1 W bar 1 plus C 2 W bar 2 so on so

forth up to C m W bar m equals 0 all right, that this is known as a linear combination. So,

they cannot be a linear combination of this vectors W bar 1, W bar 2, W bar m that

equals 0.

So, this is basically a linear combination, that is your weighing them by coefficients and

adding them.
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So, this is basically a linear combination, ok. So, there cannot be a linear combination of

vectors W bar 1, W bar 2, W bar m with co efficient C 1, C 2, C m or weight C 1, C 2, C

m such that not all of them are 0 all right, not with all them not 0 such that not all of

them  are  0.  Let  us  such  that  this  linear  combination  is  0  else  they  are  linearly

independent, all right.
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Now, what is linearly independent, linearly dependent, else they are linearly dependent.



Or let us look at this concept of linear dependence. They are linearly dependent, linearly

dependent if there exists if there exist C 1, C 2, C m not all 0 with or such that such that

C 1 W bar 1 plus C 2 W bar 2 plus C of W bar m equals 0.

So, if there exists these weights C 1, C 2, C m such that not all of them are 0 and the

linear combination of the vectors W bar 1, W bar 2, W bar m is 0, then these vectors W

bar  1,  W bar  2,  W bar  m  are  linearly  dependent  ok.  So,  this  is  basically  a  linear

combination and these vectors are therefore, linearly dependent ok. For instance, let us

take a very simple example to understand this.
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Consider the vectors W bar 1 equals 1, 1, 1 and W bar 2 equals minus 2, minus 2, minus

2, then you have W bar 1 plus you have two times, you can easily see two times W bar 1

plus one times W bar 2 equal 0; implies, W bar 1 comma W bar 2 are linearly dependent,

these are linearly dependent.
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Now, on the other hand, if consider another example, W bar 1 equals 1, 1, 1 and W bar 2

equals well 1, 2, 3, you can quickly verify that you can check W bar 1 comma W bar 2

are linearly independent all right; implies that there do not exist C 1 comma C 2 both not

0 or not both 0, not both 0 that is one of them both, one of them can be 0 such that C 1 W

bar 1 plus C 2 bar 2 equals 0, ok.

They do not exists, these weights such that the linear combination is 0, ok. So, basically

this is the concept of linear dependence and linear independence of a set of vectors. Now,

if you go back and look at the matrix A now one reduces concept of linear independence

to define the rank of the matrix A.
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So, let us go back and look at the matrix A as a set of remember it as n columns it is an n

cross n matrix. So, you can either look at it as n columns or you can either look at it as

you can either look at it as m rows ok. So, you have a 1 tilde, let us say denotes the rows

a 2 tilde and. So, these are basically your n columns and these are basically your m rows

and the now column rank of A equals the maximum number of linearly independent

columns that is a bar 1, a bar 2 up to a bar n. That is the maximum number of linearly

independent maximum number of columns that you can choose from A such that the

linear combination such that they do does not exist any linear combination which is 0.
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So, maximum number of linearly independent columns of A. Now, similarly the row

rank of A equals the maximum number of linearly independent rows of A.

So, this is the column rank of A and this is the row rank of A. So, you have this notion of

row rank and you have the notion of column rank and one of the fundamental results in

linear algebra or matrix theory is that the row rank of any matrix equals the column rank

and this quantity simply denoted by the rank of the row rank equals column rank which

is simply denoted by the rank of the matrix A, ok.
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So, we have the fundamental result and this should be available any standard textbook or

linear algebra that is the row rank equals the row rank of any matrix A equals column

rank and this is therefore, simply denoted as the rank of matrix A. And in addition this

also satisfies, the property that the rank of the matrix A is less than or equal to that is let

me just write this again rank of the matrix A is less than or equal to the minimum of the

number of columns comma rows of A. So, the rank of A is less than or equal to minima

of m comma n where m remember is number of rows and n equals number of columns.
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So, rank of any matrix is less than or equal to minimum of the number of rows and

columns of the matrix and this, the fundamental property of the matrix ok.

So, this is one of the fundamental properties of the matrices which again some of you

might already be familiar with, all right. So, the all right. So, we have this notion of

column rank which is the maximum number of linearly independent columns, the row

rank; which is the maximum number of linearly independent rows and the fundamental

theorem is that the row rank of the matrix of any matrix is equals is equal to it is columns

rank which is simply denoted by the rank of the matrix A. 

And further, this rank has to be less than or equal to the minimum of the number of rows

and columns of the matrix all right. So, we have come covered some of the mathematical

preliminaries  required  to  develop  the  various  the  various  tools  and  techniques  for

optimization. We will continue this discussion in the subsequent modules.

Thank you very much.


