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Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at example problems in DTFT, there is a discrete time Fourier transform. So, let

us continue our discussion all right.

(Refer Slide Time: 00:25)

So, we are looking at, all right example problems in DTFT. So, let us start this problem

number ten, if I remember correctly. Let us start with you know this problem deals with

the  frequency  response,  not  frequency  response  actually  the  difference  equation  or

impulse response in fact the impulse response of the given discrete time system. So, we

have the difference equation.



(Refer Slide Time: 01:25)

That is yn equals or yn minus 5 by 6 yn minus 1 equals 5 n minus 5 by 6 yn minus 1 plus

1 by 6 yn minus 2, this equals xn ok, and basically this is the given difference equation

ok. So, this is the discrete time difference equation, something that similar is very similar

to a differential equation for the continuous time.

So, this is also known as a difference equation.  In fact,  this is a constant coefficient

difference equation all right, we have seen how to solve this or we have seen how to

derive the impulse response from the constant coefficient difference equation using the

discrete time Fourier transform ok.



(Refer Slide Time: 02:28)

Now, once again;  so what  we want  to  find for this  problem is,  what  is  the impulse

response, that is for this system first, what is the impulse what is the frequency response,

which  should  be very  easy  to  find,  what  is  the  frequency response and what  is  the

impulse response. Now frequency response is simply obtained by taking the DTFT on

both sides, taking the DTFT on both sides what we have is that DTFT of yn is Y omega

minus DT 5 by 6 DTFT of yn minus 1 is Y omega into e raised to minus g omega,

because time shift becomes modulation in frequency plus 1 over 6 DTFT of Y 2 omega

yn minus 2 is Y omega e raised to minus j 2 omega.

(Refer Slide Time: 03:40)



This should be equal to X of omega, which implies that is H of omega which is, which

implies just to write it a little bit more clearly Y of omega or Y of omega into 1 minus 5

over 6 e power minus j omega plus 1 over 6 e power minus j 2 omega equals X of

omega.

(Refer Slide Time: 04:12)

It implies Y of omega over h of X of omega equals H of omega divided by 1 minus 5

over 6 e power minus j omega plus 1 over 6 e raised to minus j 2 omega.

(Refer Slide Time: 04:42)



Now what I am going to do is. I am going to first  start by factorizing this all  right,

factorizing this all right. And basically from that the partial fraction expansion and from

that derive the impulse also. So, this is the frequency response h omega ok. So, this

answers  the  first  part  of  the  question.  No  remember  this  is  basically,  already  your

frequency response of  the  discrete  time LTI  system ok.  Now we have to  derive  the

impulse response ok.

So,  if  you  take  the  inverse  DTFT  of  the  frequency  response  you  get  the  impulse

response. So, I have H of omega equals 1 over and you can easily factorize this. This you

can see is 1 minus 1 1 over 1 minus 1 over 3 raised to minus j omega into 1 minus 1 over

2 e raised to minus j omega ok. And now split this into partial fractions

(Refer Slide Time: 05:41)

The partial fraction expansion PF expansion use the partial fraction expansion and this

gives you something very simple, this is 6 times half over 1 minus half e raised to minus

e raised to minus j omega minus 1 over 3 1 minus 1 over 3 e raised to minus j omega and

now you take the inverse DTFT of each component
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You take the IDFT, take the IDFT and we will use the property, basically 1 over 1 minus

a e raised to minus j omega has the IDFT a raised to n un. So, this is the property that we

are going to use ok.

So, this is the and using this property we can see taking the IDFT we have 6 half one

over 1 minus half e raised to minus j omega is half raised to the power of n un minus 1

over 3 times 1 over 1 minus 3 e raised to minus j omega is 1 over 3 raised to n un, which

is basically.
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Now if you simplify this, this will give you, well 3 times half raised to the n un minus 2

times 1 over 3 raised to the power raised to the power n un. So, this is your h of n, this is

the impulse response of the, this is the h of n ok. This is the impulse response of the LTI

system described by the difference equation described by the given difference equation

all right.

(Refer Slide Time: 08:51)

So, now let us proceed to problem number eleven which is the following all right. So, we

consider the LTI system given below and we have to find what is the frequency response.

You have to find a couple of thing what is the frequency response H of omega, what is

the impulse response H of omega and also for this filter, what is the 3 dB frequency.

Remember 3 dB frequency you look at a low pass filter, the 3 dB frequency is defined as

that point on frequency at which the amplitude is basically 1 over square root 2 that of

the maximum.

So, basically the power of that point corresponds to half of the maximum half at the

maximum frequency all right. So, we require to find also the 3 dB frequency of this filter

ok, in that sense. So, let us start with the impulse response. Now first let me describe the

figure the figure is very simple, it is a very simple system.
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So, I have the input x of n ok. So, I have x of n, x of n going through the summer and

also  x  of  n  which  is  being  going  to  this  book  z  inverse  which  we  already  know

corresponds to a delay all right. So, this is basically your delay element or delay block

and this is your y ok.

And you can see if xn is the input, the output here is xn minus 1 and you are summing xn

and xn minus 1. So, the difference equation that describes, this is basically yn, its very

simple equals xn plus xn minus 1. So, this is a difference equation that describes the

above system
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So, this is the difference equation that describes the difference equation for the above

system.  Now  to  find  impulse  response,  we  said  impulse  response  is  basically  the

response of the system to an impulse all right. So, we set xn to be the impulse delta n and

then we find the response or the output of the given LTI system and that is very simple.

So, now to find, to find hn set xn equals delta n and what we get is, hn equals delta n plus

delta n minus 1. Now you can see h of 0 equals delta 0 plus delta 1 equals 1.

(Refer Slide Time: 12:25)



Similarly you can see h of 1 equals 1 and you can see that h of n for all other n equals 0,

for n not equal to 0 or 1.

(Refer Slide Time: 12:41)

So, the impulse response is very simple; that is for n equal to 0, h of 0 is 1 for n equal to

1 h of 1 is 1 and for all other n h of n is 0.

So, now the impulse response is basically can be characterized as h of n equals 1 0 less

than equal to n less than or equal to 1 and this is 0; otherwise the impulse response is 0

otherwise, and this is basically your impulse response of the system is basically your

impulse response and now what we also get is X of omega.
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Now taking the DTFT to find the frequency response we have X of omega plus e raised

to minus j omega xo omega, this is equal to. Well this will be equal to Y of omega taking

the. So, this is basically e raised to minus j omega X of omega; that is a DTFT of xn

minus 1 all right, if X of omega is the DTFT of xn ok.

And on the right hand side taking the DTFT; that means, Y of omega; so this implies X

of omega into 1 plus e raised to minus j omega equals Y of omega implies H of omega

which is Y of omega by X of omega; that is equal to 1 plus e raised to minus j omega

which is equal to.
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You can further simplify this as take e raised to minus j omega over 2 are common. This

will be e raised to j omega over 2 plus e raised to minus j omega over 2, but this e raised

to j omega by 2 plus e raised to minus j omega by 2 is cosine omega by 2.

(Refer Slide Time: 15:09)

So, this is simply e raised to. In fact, this is 2 cosine omega by 2. So, this is e raised to

minus j omega by 2 2 cosine omega by 2 and this is H of omega ok. So, this is your a

frequency response of the given LTI system. In fact, you can treat it as a filter. In fact, it

will be a low pass filter, we will see that. So, this is the frequency response, this is a



frequency response of the given LTI system and if you look at the magnitude response,

magnitude of H of omega you can see, this is clearly 2 magnitude cosine omega over 2.

(Refer Slide Time: 15:59)

This  is  basically  your  magnitude  response.  The  magnitude  response  is  2  magnitude

cosine omega by 2.

(Refer Slide Time: 16:28)

So, if you draw this it will looks something like this right, its very interesting and of

course, you can see its symmetric, its periodic. Remember every DTFT has to satisfy the

property that  it  has to be periodic with period 2 pi.  So, this  is periodic with,  this  is



periodic with period equals 2 pi correct. So, if you look at cosine omega that will be, it

will be periodic with period equals 2 pi ok. And now if you look at this um, if you look at

this quantity here, I can draw this as follows. So, this is 2 cosine, magnitude 2 cosine

omega by 2, when omega equals pi, this will be twice. So, at omega equals 0, this is

twice cosine 0 which is 2 all right.

And when omega equals pi at the ends all right, will be two magnitude cosine omega pi

by 2, but cosine; that is two magnitude cosine pi by 2 cosine pi by 2 is 0. So, at pi and

minus  pi  as  well  it  will  be  0  and  if  you look  at  the  frequency  response  it  will  be

something like this, which looks basically, and of course, it is periodic with, periodic

with  ok.  This  is  periodic  with  period  equals  2  pi  and this  is  the  peak  you  can  see

magnitude H of omega equals 2. So, this is a plot for magnitude H of omega and this is

omega ok. Here it is 2, here it is 0.

So, it starts at the maximum at 0 and taper zone all right decreases towards minus pi and

pi. So, clearly this is a low pass filter, but of course, its not an ideal low pass filter,

because its  not suppressing that  is  the attenuation,  it  not is not 0 outside of a cutoff

frequency. So, clearly its not an ideal low pass filter all right,and therefore, we know that

for a non ideal low pass filter we can characterize the effective bandwidth, one of the

ways one of the metrics to characterize the bandwidth is using the 3 dB frequency ok.

So, first you can see that this is a non ideal low pass filter in fact there is a non ideal

discrete time low pass filter.
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And therefore, what do we need to, what we want to find is what is the 3 dB frequency of

this non ideal low pass filter and that can be magnitude H of omega and if you look at the

max of this, this occurs at H of 0 that occurs at 0 which is 2, magnitude cosine 0 which is

equal to 2; now the 3 dB frequency omega naught. So, let us call this omega naught.

Now this will have to be such that magnitude H of omega naught is 1 over square root of

2 times maximum of the magnitude of H of omega which is 1 over square root of 2 times

2, which is square root of 2.



Remember at the 3 dB frequency the amplitude has to be 1 over square root of 2 times

that of the maximum amplitude all  right, times that of the maximum gain that is the

amplitude gain of the low pass filter.

(Refer Slide Time: 20:44)

And now this is very simple, so we have two assuming omega greater than 0 for omega

greater than 0, for omega less than 0 it is symmetric, 2 cosine omega by 2 equal square

root of 2 implies or in fact, this is omega naught, implies cosine omega naught by 2

equals 1 over square root of 2 implies omega naught 2 is now cosine inverse 1 over

square root of 2, which is pi by 4 implies the 3 dB frequency omega naught equals pi by

2 very simple ok. So, the 3 dB frequency omega naught equals to pi by 2.
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So, the 3 dB frequency is pi by 2. And if you look at this you can indicate the 3 dB

frequency over here, if you look at pi by 2 what this is saying, is that if you look at pi by

2.

(Refer Slide Time: 21:34)

This will be 1 over square root of 2 and therefore, this will be your 3 dB frequency. And

3 dB you can also say that the 3 dB bandwidth ok, the 3 dB bandwidth of the filter.
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You can also say for this non ideal low pass filter, the 3 dB bandwidth is basically pi over

2 all right.

So, that completes the analysis of this problem. Let us now move on to the next problem

which is also very interesting. Let us look at how to derive a high pass filter from a low

pass filter.

(Refer Slide Time: 22:35)

So this is my problem number 12 and we will see an interesting technique to derive a

high pass filter given a low pass filter, a discrete time high pass filter. So, let hn be the



impulse response of ideal LPF low pass filter and the cutoff equals omega c, remember

every ideal low pass filter we will have a cutoff frequency.

Now, what we want to do is, we want to consider minus 1 to the power of n hn, let us

denote this by h tilde n, and we want to demonstrate that is. In fact, a high pass filters or

question is, what is h tilde of omega. And in fact, if since hn is the ideal low pass filter.

(Refer Slide Time: 23:54)

If you look at um, for instance if you look at H of omega that will looks something like

this, and remember its all periodic with respect to pi or 2 pi. So, this will be something

like this. So, its not necessarily according to scale. So, this is pi, this is minus pi and this

is omega c, the cutoff and minus omega c or let us denote this by omega c minus omega

c and this is omega c and this is your magnitude H of omega and this is omega ok.

And this is basically your cutoff frequency ok, this is your cutoff frequency, let us call

this omega c ok. Now what is the cutoff frequency in this case minus. So, h tilde n equals

minus 1 n hn.
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If you look at h tilde n equals minus 1 n hn. Now you can write this minus 1 is e raised to

j pi or let us say minus 1 raised to n is e raised to j pi n and then you will observe

something interesting. So, this is e raised to j pi n times hn.

(Refer Slide Time: 25:31)

Which is e raised to j pi n times hn and you can see this is modulation in time this is of

the form e raised to j omega naught n or this is of the form e raised to. So, we use the

modulation property ok.



So, the modulation property states that remember you can recall if h of n has DTFT H of

omega, then e raised to j omega naught n has DTFT e raised to j omega naught n has

DTFT H of omega minus omega naught, this is your modulation property ok.

(Refer Slide Time: 26:15)

So, which means e raised to j pi n has DTFT equals H of omega minus omega naught.

So, here omega naught equals pi, so DTFT will be H of omega minus pi and that is your

H tilde of omega. So, H tilde of omega corresponding to minus 1 raised to n hn.

(Refer Slide Time: 26:57)



So, H tilde omega is H of omega minus pi, which is basically what you doing is you are

taking  the  low pass  filter  response and you are  shifting  it  by  pi.  And remember  its

periodic ok. So, the shifted version that is H tilde omega will also be periodic in fact,

with  period  2  pi  again  ok.  So,  simply  shifting  does  not  either  induce  or  destroy

periodicity all right. So, the original signal is periodic, the shifted signal will also be

periodic. In fact, the period will also be the same ok.

So, this is the shifted LPF and once you shift the LPF remember with cutoff frequency,

cutoff  frequency  omega  c  and it  is  very  easy  to  derive  that;  that  is  going  to  looks

something like this.

(Refer Slide Time: 27:48)

So, we take the original LPF you shift it to pi. So, it will be now centered around pi and.

So, this is pi and this is 2 pi at 2 pi it will be 0. So, at 2 pi it will be 0, because originally

what was it because originally, what is that pi will come to 2 pi all right you are shifting

it or originally what is that 2 pi will come 2 pi what is the 3 pi will come to 2 pi which is

also anyway 0.

So, and rest it is periodic with omega ok. So, this is pi. So, this is minus pi and you will

also have something; that is basically looks like this. And now this point if you realize

this is basically shifted by pi. So, originally, so this is omega c when you delay it by pi

this will become omega c minus pi and this will become pi minus omega c. So, this point

will become. In fact, I am sorry this point will become, so this is basically pi minus



omega c and this is omega c minus pi or minus pi plus omega c. So, now, you can clearly

see, gain is 0, if you look at magnitude h tilde omega at 0, this is equal to 0 and gain at pi

is equal to the at pi gain is equal to 1.

. So, what you can see at 0, earlier at 0 it had the maximum gain at pi the gain was 0,

cutoff was omega c all right. And now in fact, let me just write it as capital omega c. And

now what is happening because of the shift by pi all right the maximum gain is now at pi

all right. So, maximum gain is unity and in fact, at 0 all right the gain is 0 all right.

So, this is now a high pass filter ok. So, using this modulation minus 1 raised to n hn,

you are converted we have converted a low pass filter into a high pass filter  into an

equivalent high pass filter with the cutoff frequency pi minus omega c ok. So, that is now

the cutoff frequency ok. So, the cutoff frequency of this will be pi minus omega c and

this is a high pass filter. So, H tilde and you can see will have the DTFT. So, we have

minus 1 to the power n H tilde hn equals H tilde

(Refer Slide Time: 31:15)

And which is the DTFT H tilde of omega which is H of omega minus pi and this is

basically therefore, this is a now this is now hn is a low pass filter and H tilde n, this is a

equivalent high pass filter. In fact, an ideal high pass filter, ideal HPF, this is a ideal HPF,

cutoff equals pi minus omega c ok. So, that is what we are able to, that is what we are

able to show all right.



So, that is a very interesting problem and it shows an interesting trick of how to derive an

equivalent high pass filter correct, once you have a ideal low pass filter, or for that matter

it works also for non ideal; that is corresponding to a non ideal low pass filter you one

will derive a non ideal high pass filter all right.

So, let us stop here and we will continue with other problems in the subsequent modules.

Thank you very much.


