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Hello welcome to another module in this massive open online course. So, we are looking

at the Fourier analysis for discrete time a, periodic signals through the DTFT the discrete

time Fourier transform alright. And we are looking at a, at the properties of the DTFT.
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So, let us continue our discussion on that so we are looking at the discrete time Fourier

transform.  And the  next  property  so  we have  looked at  several  properties,  we have

looked at  the  duality, the  next  property that  we want  to  look at  is  differentiation  in

frequency  of  course,  in  time  it  is  a  discrete  signal.  So,  we  cannot  talk  about

differentiation in time so this  is differentiation in frequency what happens when you

differentiate in frequency.
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So, we have x of n let us say as the DTFT, capital X of omega alright which means

basically your X of omega equals summation n equals minus infinity to infinity x n e

raised to minus j omega n. Then if you differentiate this d x omega or d omega that is n

equals  minus  infinity  to  infinity  if  you  take  the  differentiation  sign  inside  x  n  is  a

constant that is d of d or different derivative d or d omega of e raised to minus j omega n

with respect to omega.
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So, or let me just write it that is d over d omega e raised to minus j omega n which is

summation n equals minus infinity to infinity x n minus j n e raised to minus j omega n

which is minus j summation. So, d x omega over d omega that is n equals minus infinity

to infinity minus j summation n equals minus infinity to infinity n x n e raise to minus j

omega n. So, this is basically if you look at it this is basically the DTFT of n x n of the

signal n x n ok.
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And therefore, this implies if you bring the j to the other side this means j d x omega or d

omega equals summation n equals minus infinity to infinity n x n e raised to minus j

omega n ok. And therefore, we can conclude that n x n is basically has the DTFT which

is j d x omega over d omega alright.
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So, next property is the differencing property since we cannot differentiate in time one

can difference the differencing in time which means if x of n has the d t f t x of omega

what can we say about the difference signal x n minus x n minus one. What can we say

about this  is the difference signal or the differential  signal alright x n the successive

differences sometimes also called as a differential signal alright so that is your basically

your delta x in time.
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And now if you look at this if you take the Fourier transform of this you can see it is very

simple this is x of omega minus the Fourier transform of x n minus 1 that is e raised to

that is the delay in time leads to modulation in frequency e raised to minus j omega x

omega equals x tilde omega which implies x tilde omega that is the DTFT of x m minus

x n minus 1 equals 1 minus e raised to minus j omega into x of omega.

So, basically x n minus so if you look at this you have x n minus x n minus 1 has the

discrete time Fourier transform 1 minus e raised to minus j omega into x of omega so this

is basically the discrete time Fourier transform.
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Let us now look at another property. So, all these are small properties, but fairly useful in

the manipulation and analysis of DTFT of signals a lot of these properties can be used

together to derive the final DTFT or to analyze the system or signal under consideration.

So, let us consider the accumulation n equals or k equals minus infinity to n that is you

are accumulating all the samples of the signal x k until sample n.

You can see this is very simpler similar to the integrator which basically integrates the

input signal x t alright in analog time the analog alright the corresponding system in

analog  for  an  analog  signal  or  for  a  continuous  time  signal  is  a  integrator  ok.  So,

basically it integrates or accumulates the signal at a certain time in the discrete time we

are basically accumulating all the signal samples.



So, basically if you look at the continuous time analog that is minus infinity to t x t d t.

So, this is similar to the integrator, integrator similar to the integrator for continuous time

signals alright.
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And now the Fourier transform of this is given as pi x of 0 you can show that pi x of 0

into delta  omega plus  x of  omega over  1 minus e  power minus j  omega,  so that  is

basically  your  accumulation  that  is  your  integral  n  equals  that  is  your  summation  k

equals minus infinity to n x k that has the DTFT that is given as pi x 0 delta omega plus x

of omega, divided by 1 over 1 x of omega divided by 1 minus e raised to minus j omega

alright.

So, that is basically the result that is basically the result for accumulation of a discrete

time signal ok. Let us now proceed to another important property that is a convolution

because we have seen this  several  times our convolution is  always a  very important

relation  very  important  property  in  analysis  of  signals  and  systems  because  the

convolution describes the output of a linear time invariant system to any input either

continuous time or discrete time ok.
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So, the next property that we want to look at is basically the convolution and now the

convolution  of  2  discrete  time  aperiodic  signals.  And  convolution  is  always  very

important as I said because it is very closely related to the properties of LTI systems ok.

So, y n which is the convolution of x 1 n into x 2 n which means this is equal to the

summation m equals minus infinity to infinity x 1 m x 2 n minus m.
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And now we want to find what is the DTFT of y n given of course the DTFT’s of x 1 n

has a DTFT that is x 1 omega and x 2 n has the DTFT that is x 2 omega.
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And now you can see this DTFT Y of omega can be obtained as follows. So, Y of omega

equals summation that is y of n, n equals minus infinity to infinity y of n e raised to

minus j omega n which is basically I can always write this as summation n equals minus

infinity to infinity substitute the expression for y of n that is m equals minus infinity to

infinity x 1 m x 2 n minus m into e raised to minus j omega n. And now I can always

write this as summation n equals minus infinity to infinity summation.
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Now  I  can  bring  I  can  interchange  the  summation  with  respect  to  n  and  m  so

interchanging the summation I am going to describe this by this arrow. So, first you have

the summation m equals minus infinity to infinity then x 1 m will come out because it

depends only on m n equals minus infinity to infinity x 2 n minus m e raised to minus j

omega n this is DTFT of x 2 n minus m that is x 2 n delayed by m samples; x 2 n delayed

by m samples. Hence the corresponding DTFT is naturally x 2 omega e raised to minus j

omega m that is modulation in frequency ok.
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So, that basically gives me summation m equals minus infinity to infinity of x 1 m e

raised to minus j omega m into x 2 omega and now if you look at x 1 m into e raised to

so I can write this as x 2 omega m equals minus infinity to infinity x 1 m e raised to

minus j omega which is nothing but basically x 1 omega.
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And therefore,  what  we get  is  y of omega which is  a  convolution  y n which is  the

convolution of x n x 1 and x 2 n has the Fourier DTFT that is x 1 omega into x of omega.

So, the net result is that x 1 n convolved with x 2 n has the DTFT x 1 omega into x 2

omega. So, convolution in time implies multiplication and frequency similar to what we

have  seen  several  times  if  equation  of  2  discrete  time  aperiodic  signals  leads  to  a

multiplication of their discrete time Fourier transform.
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So,  basically  I  can  summarize  this  as  convolution  in  time  multiplication  in  the

multiplication in the frequency domain ok. So, when you convolved to signals in time

the corresponding DTFT’s correct in these case are basically convolved in the frequency

alright.
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Let us look at similarly for multiplication in time again the dual of that is basically it

have it has convolution in the; similarly let us consider multiplication in time that is if

you look at 2 signals x 1 n into x 2 n.

Now remember the x 1 omegas are periodic hence this is the periodic convolution 1 over

2 pi x 1 omega periodically convolved with because remember the net DTFT, also has to

be periodic correct when you convolve to a periodic thing remember the DTFT, is always

a periodic signal so you cannot perform a general convolution, but you have to convolve

in such a way that  the resulting output is  periodic and that  is  given by the periodic

convolution ok.

So,  this  is  basically  the periodic  convolution of x 1 the periodic  convolution of x 1

omega with x 2 omega which is basically 1 over 2 pi over 2 pi x 1 theta x 2 omega minus

theta d theta I am sorry this is d theta and this is for any contiguous, this is for any period

2 pi, this is a periodic convolution. This is over this is over any period 2 pi ok.
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Now some other properties if x n is real let us consider a real signal. Then I can always

express  a  real  signal  as  the  sum  of  even  and  odd  components  so  this  is  the  even

component x e n the even component x o n, this is the odd component we have already

always we have seen that you can always do this that is x e and the even component of a

signal is x n plus x of minus n by 2, the odd component is x n minus x of minus n by 2

we can always do this for any real signal ok.

And now further if I can express the DTFT of x n as a omega plus. So, in general the

DTFT of x n is complex you can express this as a omega plus j times b omega.
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Then it can be shown that and this is something that can be shown that is x n has the

DTFT that corresponds to the real part of the DTFT of x n that is the even component has

the DTFT a omega that is real part of the DTFT x of omega. And similarly as you can

expect the odd component has the DTFT that is given by j times b omega ok.

So, the even component has a DTFT that is a times omega that is a real part. And the odd

component as there is so the DTFT of the real part even part of the purely real signal you

can see is basically real and the DTFT of the odd part odd component of this real signal

is purely imaginary you can see that j times B of omega this is purely imaginary ok, this

is purely imaginary.
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And now further since we have a real signal recall that for a real signal x of conjugate of

minus omega equals x of omega for a real signal x n where x omega is the DTFT of this

is true for any remember this is true for any real signal x n.

So, this implies that if I take the DTFT a of omega plus j B of omega this is x of omega

this must be equal to x of minus omega conjugate so a minus omega j b minus omega

conjugate.
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So, this must be equal to a of minus omega plus j b minus omega conjugate and this

implies that A of omega plus j b minus omega equals well a of minus omega minus j b of

minus  omega.  Now  equating  the  real  and  imaginary  parts  equating  real  comma

imaginary parts we have A of omega equals A of minus omega which implies A of omega

is a even function.
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And further we also have B of omega equals you can see waiting the imaginary parts

where B of omega equals minus I am sorry this has to be B of minus omega. So, this is

basically B of minus omega ok. So, B of omega equals minus B of minus omega which

means this is a this is an odd function.

So, A of omega for a real signal the real part is an even function over a real part of the

DTFT and  the  imaginary  part  B  of  omega  is  an  odd  function  of  omega  ok.  Now,

therefore, if x n is real and even now what does this imply this implies two things; one is

x n equals real plus even this  implies x n equals x e of n comma x o of n the odd

component of n is 0. So, this implies x of omega equals A of omega which is basically

real and even.
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So, for a real and even signal the corresponding DTFT is so if the signal is real plus even

the corresponding DTFT is real plus also even on the other hand if the signal is real and

odd  ok.  Now  look  at  the  other  thing  if  x  n  now  this  implies  that  x  n  equals  odd

component ok, the even component is 0, if x n is an odd signal and x e of n equals 0.
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And this implies x of omega equals x odd component of omega which is equal to j b of

omega which is purely imaginary and odd remember B of omega is odd and this is a



purely imaginary functions. So, this is this is purely imaginary plus odd, so if the signal

is real even signal its DTFT is pure is purely real and even.

If x n is real and odd signal then its DTFT is purely imaginary and odd ok. So, this is the

important thing to keep in mind alright so that basically sums up the properties of the

DTFT of real signals real and even real and odd signals alright.
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And then what  we can also do so as to sort  of to  complete  this  we can look at  the

Parseval’s relation that is the last topic one of the last properties that we can look at for

the DTFT that is the Parseval’s relation.

And this is also very simple remember previously we have said let us say we have y n

equals x 1 and that is the multiplication of x 1 n and x 2 n then we know that Y of omega

is the periodic convolution of x 1 omega and x 2 omega. So, that is given as integral 1 1

over 2 pi, integral over any 2 pi region x 1 of theta; x 2 of omega minus theta d theta

which implies basically that now if I look at summation.

So, now, we have basically  what do we have we have basically  summation n equals

minus infinity to infinity y n e power minus j omega n this is equal to y of omega.
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Now if you set omega equal to 0. Now, in this set omega equal to what this implies is

summation n equals minus infinity to infinity y n equals y of 0 implies summation n

equal to minus infinity to infinity the product x 1 into minus infinity to infinity x 1 n into

x 2 of n equals y of 0 and y of 0 is nothing, but set omega equal to 0 on the right.
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So, that is integral x 1 of theta x 2 of minus theta d theta and you can also in fact, write

that as theta is just an index. So in fact, you can also write that as 1 over 2 pi integral



over 2 pi; x 1 of omega x 2 of minus omega d omega ok. This is summation x 1 of n x 2

of n ok.

So you can always write this thing summation n equal to minus 1 this is nothing, but the

correlation between these two discrete time sequences x 1 n x 2 n summation n equal to

minus infinity to infinity x 1 n x 2 n that is integral 1 over 2 pi integral over any 2 pi x 1

omega into x 2 minus omega d omega I have simply replaced the integration variable

theta by omega ok.

Now if we set x 2 n now in this so this you can think of this as the generalized Parseval’s

relation. In fact, this is a step ahead of the Parseval’s relation it is much more general it

talks  about  two  different  signals  x  1  n  and  x  2  n.  So,  you  can  think  of  this  as  a

generalized or a general form. So, even think about this as a general form of Parseval’s

relation.
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Now if you said x 2 n equals x 1 conjugate n. Then what you have is x 2 of omega equals

x 1 conjugate of minus omega because conjugate sequences is x 1 conjugate of minus

omega which means x 2 of minus omega equals x 1 conjugate of omega. So, if you

substitute if you substitute x 2 n equals x 1 conjugate on n.
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On the left hand side what we have a summation x 1 n into x 1 conjugate n that is

magnitude x 1 n whole square that is equal to summation 1 over 2 pi integral over 2 pi x

1 omega into x 2 of minus omega which is x 1 conjugate of omega that is x 1 omega and

x 1 conjugate of omega which is magnitude x 1 square into d omega that is the sum of

the energy over 1 period in that this is not the energy.

But you can think of this as the power because you are dividing by 2 pi so this is the

power of the you can think of this as the power of the DTFT ok. So, this is the Parseval’s

relation  for the,  this  is  the Parseval’s theorem for DTFT. The summation  n equal  to

minus infinity to infinity magnitude x 1 n square equals 1 over 2 pi integral over any 2 pi

region magnitude x 1 of omega whose square t omega alright.

So, basically that completes our discussion of the properties of the DTFT. In  the

subsequent when the next module will start looking at the DTFT and its properties with

relation to the with relation to LTI systems alright. So, we will stop here and continue in

the subsequent modules.

Thank you very much.


