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Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at  the Fourier  transform and its  properties,  all  right.  So,  let  us continue this

discussion. Today let us look at another new aspect that is distortionless transmission

how do you characterize a system with distortionless transmission ok.
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So, what we want to look at today is the notion of distortionless transmission, the notion

of distortionless transmission through an LTI system. 

Now, let  us  say again  let  us  consider  an  LTI  system that  is  with  input  x  t  impulse

response given by h t and output given by y t. Now, for this system to be distortionless

right for distortionless transmission distortionless let me just write it that is no distortion

for, so for distortionless transmission through LTI system, for distortionless transmission

through LTI system ok. The signal x t we call it distortionless that is transmission term

distortionless if y t is a delayed and scaled that is amplified or attenuated version of x t. 
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So, what we mean to say by this is that is we if you transmit x t through this LTI system

we call this LTI system distortion left distortionless if the output y t is simply a scaled

and possibly delayed version of and or possibly a delayed version of x t. So, what we

want is that y t should not distort x t, but y t can differ from x t only to the extent that it is

a scaling factor K times x minus t d. So, we have this scaling this is your K which is your

scaling and this is the delay.

So, let us say we have x t which is consider a simple example for your signal x t ok.
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Let us say we have a triangular pulse of height one center is at 0 from T by 2 to minus T

by 2. So, this is let us say your original signal x t. Now, you pass it through the LTI

system if the LTI system is distortionless all it can do is it can simply scale correct and

delay. So, from minus, so it delays this by t d. So, which means. So, we have this will go

from. So, this is shifted to t d. So, this is shifted to minus t by 2 plus t d t by 2 plus t d

and the height is k. So, it is scaled. So, this is a this is your y t which is delayed by. So,

scaled by scaled and this is your.

What you can see basically that the shape remains intact that is x t and y t are similar to

each other in the sense that y t is simply delayed and a scaled that is its either amplified

or  attenuated  version  of  x  t  we  call  such  an  LTI  system  as  a  as  a  distortionless

transmission system. And typically  we only consider  a delay because if  a  cause if  a

system is causal then it can only a it can only delay the signal right if its advances the

signal or the technically that will also be distortionless, but the system would be non

causal which is not practically which is not practically feasible right. 

So, we consider only an amplification or attenuation that is scaling by a scaling factor K

and also a delay by t ok. 
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Now, therefore, we have basically if you look at such a system you can naturally see we

have;  y  t  equals  K times  x minus x of  t  minus  t  d  implies  if  you take  the  Fourier

transform you have y of omega equals  K times.  Now, delayed version of,  so this  is



delayed version of x delayed by t d. So, the Fourier transform of x of omega e raise to

minus omega t d which is basically K e raise to minus J omega t d times x of omega and

now, you can  see  this  is  nothing,  but  your  frequency  response  H of  omega  of  this

distortionless system ok.

So, we can characterize since the output frequency response output response the Fourier

transform  of  the  output  is  the  frequency  response  of  the  system  times  the  Fourier

transform of the input we have H of omega is K e raised to minus J omega t d which is

basically the characterizes the frequency response of characterizes a frequency response

of this distortionless system. And therefore we have H of omega is e raised to minus g

omega t d which or K e raised to minus g omega t d which means if you look at the

magnitude spectrum we have magnitude H of omega equals K that is a constant.
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So, for a distortionless spectrum the magnitude spectrum looks as follows it is simply it

has to be constant over the entire frequency band. So, this is your magnitude H of omega

equals constant over entire frequency band. 
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And if you look at the face of omega if you look at the angle of omega or if you look at

theta H that is the angle of H of omega you can see this is minus omega t d and if you

look at this quantity this has a linear characteristic this is linear in omega ok.

(Refer Slide Time: 09:10)

So, if you look at this will be something like its characteristic will be this slope equals

minus t d ok. So, this is passes through the origin and this is your theta H equals minus

omega t d. So, this is the phase characteristic the phase is linear in omega ok. So, this

phase is linear in omega for distortionless transmission, for distortionless transmission



ok.  So,  basically  what  this  shows  is  this  characterizes  the  amplitude  and  phase

characteristics of an LTIs or the frequency response of an LTI system for distortionless

transmission.

The magnitude or the amplitude of the frequency response has to be constant over the

entire frequency band and the phase has to be linear in the frequency it has to have a

linear  phase  response  ok,  all  right.  So,  that  is  an  important  property  because

distortionless systems are frequently encountered and very important in the analysis of

signals and systems.
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Now, let us now, look at LTI systems characterized by differential equations. So, we have

LTI systems that are characterized by that are characterized by differential equations. So,

this by this we mean a constant coefficient differential  equation typically we meets a

constant coefficient differential equation and that is given as follows. 

Summation K equal to 0 to N a k d to the k y t by d t k equals summation K equal to 0 to

M, b to the K b k d to the K x t that is the kth order derivative of x t and these a k and b k

are these are the constant coefficients ok, these are the constant coefficients.
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Now, if you take the Fourier transform on both sides taking the Fourier transform we

have summation K equal to 0 to N Fourier transform of the kth order derivative we know

is J omega raised to the k. 

So, the Fourier transfer of the kth order derivative d raise d to the k y t or d t k that is J

omega to the power of K y omega and the Fourier transform on the right is well that is

summation  K equal  to  0 to  M, b k again  the  kth order  derivative  of  x  t  as  Fourier

transform J omega raised to K X omega.
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Taking omega common you have Y omega summation K equal to 0 to N, J omega power

K equals  summation  K equal  to  0 to  M bk J omega power K into X omega which

basically implies.
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Now, that Y omega over X omega which is nothing but the transfer function H omega

this is summation K equal to 0 to N or K equal to 0 to N b k j omega K divided by K

equal to 0 to N, a k J omega K and this is your H of this is your transfer this is your

frequency response of the LTI system. This is the frequency response of the LTI system.

So,  that  characterizes  the  frequency  response.  So,  that  characterizes  the  frequency

response of the LTI system which is characterized by the constant coefficient differential

equation  ok.  And  now,  let  us  look  at  the  ideal  filters  the  frequency  response

characterization of ideal filters.
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Now, ideal filters are the following. Now, filters basically allow only a specific set of

frequencies to pass ok. So, what we have what we have is we have a system if you input

a certain signal to that system x t,  it  only allows a specific set of frequencies that is

specific  frequency  components  of  x  t  to  pass  through  and  it  blocks  the  rest  of  the

frequencies ok.
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So, allows only specific set of frequencies to pass and blocks ideally blocks the rest of

the frequencies ok. Example for instance we have an ideal low pass filter. Now, as the

name implies ideal low pass filter allows only the lower frequencies pass through. 
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So, for instance we have the response magnitude response magnitude H of omega equals

1 for mod omega less than equal to omega c and this is 0 otherwise ok.

So,  what  we  have  is  a  filter  that  looks  like  this.  So,  we  have  in  this  band  for  all

frequencies less than omega or greater than omega minus omega c and less than omega c

its response is unity ok. So, it basically allows these frequencies to pass ok, because in

this band minus omega to c to omega c the frequency response is unity when it multi

when  its  multiplied  by  the  frequency  response  of  the  input  you  can  see  all  these

frequencies  all  the  components  correct  in  this  band  are  multiplied  by  unity  gain

therefore, it allows these components to pass. 

But the gain outside this band of omega c and minus omega c that is frequency is less

than minus omega c and frequency is greater than omega c you can see that the gain is 0

which  means  the  input  frequencies  are  completely  blocked  ok.  Because  the  input

frequency components corresponding to this that is band greater than omega c and less

than minus omega c is multiplied by a gain of 0.



So, this is the pass band this is the this blocks. So, it blocks all frequencies in this range.

So, this is your blocks frequencies in this range gain equal to 0 and in the pass in minus

omega c to omega c the gain is equal to 1 ok, and this quantity omega c this is termed as

a cutoff frequency. For a low pass filter all frequencies of the input signal greater than

this cutoff frequency omega c are basically cutoff or these are blocked ok. 
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And this characterizes the ideal filter the ideal filter has very sharp cutoff frequency. You

can see for omega less than omega c, you have a gain of unity for omega greater than

omega c you have a gain of 0. In practice it is difficult to design such sharp filters and

typically what you have is more of a transition ok. So, you have this is the pass band, this

is the stop band is what is known as the and in practice you will have what is known as a

transition band where it is transitioning ok.

So, in a non ideal filter this you will have in a, so in a non ideal filter you will also have a

transition band where the frequency response is transitioning from the pass band to the

stop band stop band to the pass band ok, but it is not exactly 1 or 0, but it takes gains

which are between 1 and 0. So, this is basically you will have a transition band you can

call this as a transition band in a non ideal filter. So, and we would like to obviously,

design filters which are as close to ideal as possible which means the transition band

which  means  the  cutoff  is  as  sharp  as  possible.  The  transition  band  is  as  small  as

possible.



So, in practice we would like to have this delta w transition we can call this delta w trans,

delta w in practice would like to have a very narrow, in practice we would like to have

very narrow transition band that is a narrow trans which means we want to have a very

sharp cutoff, very sharp edges of the filter, ideal filters have very sharp edges. So, ideal

filters have a very sharp implies they are difficult to design. So, the ideal filters which are

very sharp edges these are difficult to design. 
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Similarly one can have an ideal high pass filter ok. So, one can have an ideal high pass

filter. Now, in an ideal high pass filter what you have is you basically have something

that looks like this. So, in an ideal high pass filter let me just write it on a new page. So,

we have an ideal pass filter. 
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And in an ideal high pass filter as the name implies again opposite it is a exact opposite

of a low pass filter. So, instead of blocking frequencies greater than a cutoff frequency

omega c, you allow the frequencies greater than a cutoff frequency omega c to pass and

so the gain outside minus that is greater the freq frequency is greater than omega c or

frequency less than minus omega c is 1 and in this band minus omega c to omega c the

gain is 0 and the gain here in these outside gain equals 1.

So, blocks all frequencies components. So, this blocks all frequency components in the

frequency band minus omega c to omega c.
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So, naturally  its magnitude response is magnitude H of omega equals 1, mod omega

greater than omega c this is equal to 0 otherwise ok. So, this is an ideal high pass filter. It

blocks all the signals in the lower all the components in the low frequency region that is

from minus omega c to omega c and allows only those frequency components which are

greater than omega c or less than minus omega c all right to pass, all right has unity gain

in the bands which are frequency bands which are greater than omega c and less than

minus omega c. And obviously, once again it is very difficult to design an high pass filter

high pass filters with such sharp edges.

So, once again you will have transition bands from the stop bands to the pass band. So,

again once again you will have a transition. So, these are your these are your transition

bands in a non ideal filter and we would like to make this transition bands once again we

would like to make this transition bands very narrow all right. 

So,  in this  module we have looked at  the frequency response of a distortionless LTI

system, its magnitude of a face characteristics, and also we have also started looking at

ideal filters in particular the ideal low pass and the ideal high pass filter all right. So, let

us stop here and look at other aspects in the subsequent modules.

Thank you very much. 


