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Hello welcome to another module in this massive open online course all right. So, we are

looking at the properties of the region of convergence of the Laplace transform. We will

let us just continue this discussion if xt is a 2 sided signal.

(Refer Slide Time: 00:26)

On the other hand, if xt is a 2 sided signal which implies xt is non-zero for entire range;

that is minus infinity less than t less than infinity, that is it looks something like it is a 2

sided signal. This is the time axis and this is x of t is non-zero.
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Then the ROC is of the form sigma 1 less than real part of s less than sigma 2, where

sigma 1 comma sigma 2 are the real parts of two poles of X of s, where sigma 1 sigma 2

are the real parts of two poles of X of s. Thus the ROC is the vertical strip. This ROC

equal to vertical strip between the lines, real part of s equals sigma 1 comma real part of

s equals sigma 2. So, the ROC is basically a vertical strip and this, you can check this as

follows; that is basically if you look at this.
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Again let me just draw this. So, you have sigma, you have j omega, you have your sigma

1, you have your sigma 2. The real parts between these two poles, and therefore, the

ROC will be this vertical strip. This is your ROC.

For instance, let us take again a simple example; this I think is best illustrated using an

example.

(Refer Slide Time: 03:17)

For instance if you take xt equals minus e raise to 2 t, you mind u u minus t minus e raise

to 2 t u minus t correct, and plus e raise to minus 3 t u t, then the Laplace transform. Now

look at this, this is a 2 sided signal. So, this you can click, this you can check, because u

minus t is non 0 for t less than 0, u t is non 0 for t greater than 0.

So, this is a 2 sided signal this and the Laplace transform Xs. You can verify that is given

as 1 over s minus 2 plus 1 over s plus 3, and the poles are 2 comma minus 3, and the

ROC will be. Basically you can see it is the intersection of the ROCs of the both signals;

that is real part of s greater than minus 3 intersection real part of s less than 2; that is the

intersection, and which implies the ROC is basically minus 3 less than real part of s less

than.
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So, this is basically your final ROC and therefore, it includes the strip between minus 3

and 2, and this can be simply illustrated as follows; this is sigma, this is j omega and you

have minus 3 sigma equals minus 3. Here this is one pole and you have sigma equals 2.

Here this is another pole, this is the other pole and ROC is the strip between this two.

ROC is minus 3 less than real part of s less than 2, and any other poles can only lie

outside the ROC. So, you can have poles which are outside only, outside the ROC ok.



And this is basically a vertical strip. So, this is the ROC; that is sigma 1 less than. So, the

form sigma 1 less than real part of s less than sigma 2. This is basically the ROC, and the

ROC in this example is minus 3 less than real part of s less than, and so let us look at the

partial fraction expansion.

(Refer Slide Time: 06:51)

The partial fraction of expansion that is, if X we have X s equals some constant K times s

minus Z 1 times s minus Z 2 into s minus Z m divided by s minus P 1; that is Z 1 Z 2 Z

m are the 0s s minus P 2 into s minus P n, where m P 1 P 2 P n are the poles and m is less

than, m is less than. And remember when m is less than n, this is known as a proper

rational expression or the proper rational function.
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So, if it is a proper rational function, I can express, that is implies this is a proper rational

function.  If this is a proper rational function then I can express X s as the sum, and

simple pole case. We are assuming all the poles are distinct; that is we have simple poles.

(Refer Slide Time: 08:40)

That is no two poles are such that P i equals P j; that is all poles P i not equals P j.

So, we have all  the poles are distinct for. So, for the simple pole case,  all  poles are

simple,  which means all  poles are basically distinct,  and for that scenario Xs can be

expressed as C 1 by s minus P 1 plus C 2 by s minus P 2 plus C n by s minus P n, where



the coefficient C k is given as s minus Pk times Xs evaluated at s equals P k. So, this is

the partial fraction expansion of Xs, and C k is the coefficient k th coefficient all right.

In the partial fraction this is a coefficient in the partial fraction expansion of Xs. This is a

coefficient in the partial fraction expansion of Xs.
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So, far; so, what we have, is a partial fraction expansion for the case where m is less than

n all right; that is the degree of the numerator polynomial is strictly lower than the degree

of the denominator polynomial. This is a proper rational function, Xs is a proper rational

function all right.

In this case we express using its partial fraction expansion; that is the sum C 1 by s

minus P 1 plus C 2 by s minus P 2 so on, and Ck, the coefficient of the k th term is given

as s minus Pk times Xs evaluated at the pole s equals P k. And all the poles are assumed

to be simple; that is there are no repeated poles. So, all the poles are distinct P i not

equals P j ok.
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Now, for the multiple pole case, now for the multiple pole case Xs in denominator has a

factor of form. It has a factor of form s minus P i raise to the power of r and then in this

scenario, we say that the pole P i has a multiplicity of r. So, this implies pole P i, pole Pi

has multiplicity equal to r. 

(Refer Slide Time: 12:51)

And therefore, Xs will have terms of the form the partial fraction expansion of Xs will

have terms of the form. We will have terms of the form lambda 1 divided by s minus P i



plus lambda 2 divided by s minus P i square plus lambda r divided by s minus P i raise to

the power of r.

So, these are the terms corresponding to s minus P corresponding. These are the terms

corresponding to pole P i and you will have the rest of the terms corresponding to other

poles, terms for pole P i which has multiplicity r. So, these are the terms. So, there will

be r terms corresponding to the pole P i all right. Lambda 1 by s minus P 1 P i lambda 2

by s minus P i square so on up to lambda r divided by s minus P i raise to the power of r,

where r is a multiple t multiplicity of the pole here, and the coefficient lambda, lambda r

or lambda r minus k is evaluated as follows

(Refer Slide Time: 14:18)

We have the expression for lambda r minus k that will be equal to 1 over k factorial. So,

this expression will be equal to 1 over k factorial d k raise to power k s minus P i to the

power raise to the power of r into Xs evaluated at s equals P i. So, this lambda r minus k.

Let me just write it again. Once again clearly lambda r minus k equals 1 over k factorial

terms be to the k ds to the k s minus Pi raise to the power of r X to the power of X s

evaluated at s equal to P i evaluated at s equal to P i ok.
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So, this is basically the expression coefficient of. Remember coefficient in the partial

fraction expansion, coefficient in partial fraction expansion of Xs. This is the coefficient

in the partial fraction expansion of the rational function, the rational for Xs which is the

rational function of s only. So, that takes care of various scenarios; that is when you have

simple poles as well as multiple poles.

(Refer Slide Time: 16:37)

Now, let us look at the Laplace transform properties for LTI systems; that is the next

aspect, the Laplace transform and its application for the for LTI systems. So, let us look



at Laplace transform for LTI systems. Now for an LTI system, consider an LTI system

given by impulse response ht. So, this is LTI system xt, x t equals the input and yt equals

the output of the LTI system.

Then we have, we know that the output yt of an LTI system is a convolution of the input

xt with the output, with the it is a convolution of the input xt, with the impulse response

ht of the LTI system. Therefore, the output impulse response. Remember convolution in

the  time  domain  is  a  product  in  the  transform domain,  there  is  a  Laplace  domain.

Therefore, since we have yt equals xt convolved with ht.

(Refer Slide Time: 18:26)

Remember  this  is  your  convolution  and  therefore,  when  we  take  the  transform,  the

Laplace transform Ys will be the product of the Laplace transforms of Xs term Hs.

And. In fact, this also implies this, implies that also, implies that Hs equals Y s divided

by Xs and Hs. This quantity is known as. This is a very important role in analysis of LTI

systems. This is known as the transfer function, this is known as the transfer function,

this  is  known as  the  transfer  function  of  the  system.  So,  H s  which  is  the  Laplace

transform of  the  impulse  response.  Remember  H  s  is  the  Laplace  transform of  the

impulse response ht. This is known as the transfer function, and this characterizes, this is

a fundamental aspect property of the system, it characterizes the behavior of this LTI

system in a very fundamental fashion ok.
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So,  ht  remember  ht  has  Laplace  transform.  So,  Hs  is  the  Laplace  transform of  the

impulse response. So, this is. So, this is the Laplace transform of the impulse response of

the LTI system under consideration further. Now let us look at other properties of the LTI

systems and from the perspective of the Laplace transform.

(Refer Slide Time: 20:53)

So, other properties of the LTI systems. Let us look at some other properties of the LTI

systems. Now let  us in particular, let  us look at  causality. Now for a causal  system,

remember we have ht equal to 0 for t less than 0, which implies basically if you look at



this, this basically implies that h ht is a right handed signal. This basically implies ht is a.

Remember we have ht of the form correct, we have ht equal to 0 correct ht equal to 0, for

the impulse response has to be 0 for t less than 0 correct; that is the property of the

causal, that is the property of the causal, that is the property of the causality a system that

is ht equals 0 for t less than 0, which implies ht is a right handed signal, which implies

the ROC of ht.

Now, from the properties of the ROC. Therefore, in the Laplace transform Hs must have

ROC, which is of the form real part of s is greater than the sigma max. 

(Refer Slide Time: 22:52)

So, the ROC this implies in the ROC of Hs is a form, is a form. The real part of s is

greater than sigma max. So, remember this follows from the properties of the ROC; that

is since ht is a causal system, if the LTI system is a causal system, it must be the case that

the impulse response is non-zero for t less than 0, which is implies that it  is a right

handed signal, and therefore, the ROC of H s which is impulse response of ht, which is

the Laplace transform of ht must be of the form, real part of s greater than sigma max ok.

Now, let us look at stability of the LTI system. Now let us look at the stability of the LTI

system. Now it is BIBO stable; remember bounded input bounded output stable.
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If integral minus infinity to infinity magnitude h of t less than infinity. This implies that

ROC contains the j omega axis; that is if you look at the s plane y axis is the j omega.

This is the. So, this is basically your s plane.

(Refer Slide Time: 24:56)

Now, whatever is ROC must contain the j omega plane. If the system is stable ROC must

contain the j omega axis; that is this can be seen as follows. 
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If you look at magnitude of H of j omega; that is equal to integral minus infinity to

infinity h of t e raise to minus; that is if you substitute s equals j omega magnitude f of H

of j omega is integral minus infinity to infinity h of t e raise to power minus j omega t dt,

which is less than. That is a magnitude of the integral is less than or equal to the integral

of the magnitude, which is less than or equal to. Therefore, integral ht integral e power

minus j omega naught omega t dt.

But magnitude of e power raise to minus j omega t is 1 which means this is equal to

integral e power minus minus infinity to infinity h of t dt. So, magnitude of h of j omega

is a less than or equal to this, which means. Therefore, if this is finite, if this quantity is

finite which implies, if this is finite implies, if this quantity, if integral magnitude integral

minus infinity to infinity magnitude ht dt is finite, this implies
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H of  j  omega  equals  for  finite  quantity  less  than  infinity  which  implies  j  omega  is

element of j omega belongs to the ROC.

So, argument is the following; that is h of the magnitude of H of j omega is strictly is less

than or equal to integral minus infinity to infinity magnitude h of t dt, which is a finite

quantity. Therefore, or magnitude of H of the omega must be a finite quantity, which

implies the Laplace transform must converge for s equal to j omega, which implies that j

omega belongs to the ROC of the Laplace transform. So, implies j omega Xs belongs to

ROC of the Laplace transform that is H of s ok.

And finally, Laplace transform; that is a transfer function of the LTI system described by

the differential equation.
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We have the transfer function of the LTI system described by the referential equation,

described by a differential equation; that is I have sum k equals 0 to N a k d raise to k y t

dt k; that is equal to sum k raise to 0 to M bk d raised dk xt dt d to the, and d k d to the k

xt over dt k.

Now,  we  know  from  the  properties  of  the  Laplace  transform  that  yt  has  Laplace

transform Y s implies. So, yt implies d raise to d t. Remember d yt over dt has Laplace

transform s Ys. In fact, this implies progressing this way.

(Refer Slide Time: 30:32)



We can show, one can show the d raise to k y t over dt k or for that matter d raise to k yt

or dt k has Laplace transform s to the power s raise to k Ys.

Similarly, d raise to k d raise to k xt dt over dt k all right. The k th order derivative of the

signal xt with respect to time, has a Laplace transform s to the power of k X s. So,

substituting this we have. So, from the differential equation it follows, it follows that we

have summation k equal to 0 to N a k sk s raise to k Ys equals summation k equal to 0 to

M bk s raise to k X s. 
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So, implies taking Ys common on the left Xs common on the right.

So, Ys by X s, if you look at this. This is equal to summation k equals 0 to M b raise to k

x k s k divided by k equal to 0 to N a raise to k a k s raise to k and this is a transfer

function. In fact, let me, we remember we said H s is defined as the impulse response

that is the Laplace transform of the output divided by the Laplace transform the input.

So, this is the transfer function of the system. This is the transfer function of the system,

and remember this is a rational function. You can clearly see this is a rational, then you

can  clearly  see  that  this  is  a  rational  function  ok.  So,  all  right.  So,  basically  that

completes our description of the definition, and the properties of the Laplace transform.

So,  for,  with  this  what  we  have  done  is,  we  have  completed  our  discussion  of  the

definition, definition of the ROC properties of the ROC, some of the properties of the



Laplace transform and the description of the properties of the Laplace transform with

LTI,  or with respect to LTI systems and several other aspects. So, this completes our

discussion of the theory, behind the theory and applications theory, applications and the

properties of the Laplace transform. And in the subsequent modules, we look at some of

the  examples  related  to  Laplace  transform  solving  problems,  involving  Laplace

transform as it applies to the principles of signals and systems all right. So, we will stop

here.

Thank you very much.


