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Hello  and  welcome to  the  NPTEL mooke  on applied  electromagnetic  for  engineers,  in  this

module we will consider a few conceptual problems and conceptual questions that are associated

with transmission lines, which we might have after going through the previous modules and then

we will also consider couple of paradoxes are at least one paradox that I talk you about already

and  the  resolution  of  this  paradox.  Let  us  begin  by  re  visiting  the  topic  of  characteristic

impedance,  what  is  characteristic  impedance  of  a  transmission  line?  We have  defined  trans

characteristic impedance of a transmission line.

Denoted it by z0 when in most case of that we will be consider are the transmission lines without

any losses, so in which case that 0 will be completely real and you can instead of calling it as

characteristic impedance you can call as characteristics resistance and denoted by r0 okay. But

nevertheless what is this characteristics impedance we have that, so far not offered a definition of

characteristics impedance except point out, that when we solves the transmission line equations

there is how the voltage is changing and how the current is changing through the transmission

line.

It  is  possible  for us to define the ratio  of  the forward going voltage  that  is  v0 + along the

transmission line, and a forward going current i0 + along the transmission line the ratio of these

two is what we called as the characteristics impedance right. We could also consider the other

scenario  I  could  put  my  source  at  you  know  at  one  particular  end,  and  then  extended

transmission line all the wave from z = 0 may be towards z = - ∞ okay. Here one side excites the

transmission line that is one side connects the source that will be backward travelling voltage.



Where v0 = - and a backward traveling current i0 – backward in the sense that it is going from z

= 0 to z = - ∞, again – of this ratio will tell you the characteristics impedance in a case where we

have a finite length transmission line which is what would happen in a in practice, then you will

have both forward going as well as backward travelling waves v0 + and v0 – in which case to

define  characteristics  impedance  you  pick  either  forwards  going  voltage  and  forward  going

current and take their ratio or pick the backward travelling voltage v0 – and.

Negative of the backward travelling current that is – i0 – and that ratio will again be equal to

characteristics impedance, now this is a straight forward definition in literature we will find z0

define by other methods consider for now that I have a source here and z = 0 and then I have a

long transmission lines stretching all the ray towards ∞, okay so my source if kept at z = 0 and

my transmission line is kept all the way to ∞ okay. Now supposing I consider I chop of the

transmission line at a particular point okay, so imagine that this is my transmission line okay I

cut my transmission line here.

And replace it with the impedance that impedance let me call as z0 okay, I can of course replace

it with whatever impedance that I want, but let me choose a particular value of the impedance

such that when I connect the source and excite the transmission line, I do not see any reflection

back in other words that impedance with which, the transmission line will be terminated or must

be terminated in order to cause no reflections is called as the charactestics impedance okay so

this is another definition charactetstics impedance that you would actually find.

Of course mathematically another way in which you define the characteristics impedance is to

take the ratio of the line impedance per unit length that is z, and admittance y of that one and

then take the ratio of z/y that will also denote the charactestics impedance okay. So regardless of

hat  definition  that  you adopt  it  should  be  clear  that  characteristics  impedance  is  actually  a

quantity  that  is  completely  specified  by  the  characteristic  constants  of  the  line  that  is  the

distributed,  constants  of  R  L C  and  G  that  corresponds  to  a  given  transmission  line  will

determine what is the characteristics impedance.

Usually  there  is  a  another  question  that  comes  to  once  mind,  that  if  I  consider  a  loss  less

transmission line, so why would I use a loss less transmission line obviously I do not want any

kind of an energy to be wasted in the transmission line that I connect, between the source and the

lot okay. So for that reason I will have to consider loss less line whether it is realize that practice



or not it is a different question but at this point consider a loss less transmission line, and what is

the characteristic impedance of a loss less transmission line it is given by the ratio of L2C √ of

L/C.

Is  the  characteristic  impedance,  now  you  might  immediately  ask  well  z0  for  a  loss  less

transmission  line  turned  out  to  be  real  and  real  impedance  is  nothing  but  resistance,  but

resistance that we have learned from our basic circuit theory implies decapitation of the power or

decapitation of the energy, output a loss less line be considered equivalent to our impedance or

equivalent  to  resistance  the  answer  is  quite  simple,  you  have  to  again  go  back  to  the

characteristics impedance definition that is the impedance which you seen by the source when it

is connected to infinitely long transmission line.

Because on a infinitely long transmission line because on a infinitely long transmission line I

only have forward going voltage and forward going current my source is kept it z = 0, so only

have  forward  going  voltage  and  forward  going  current  and  that  ratio  is  the  characteristic

impedance, no for a loss less transmission line suppose imagine that you launch a certain amount

of pulse energy inbuilt or a lat launch loss a pulse on to the transmission line, this pulse begins to

propagate from the z = 0 and keeps going all the way up to ∞. When would the pulse return back

to the source after the infinite amount of time?

So in effect this pulse that you have launched on the transmission line moves all the way to ∞

and never comes back, so for as long as the as far as the source is concerned is energy that is

represented by the pulse is simply lot. It is like a black whole the transmission line is acting like

a black whole because it is not going to give you any return pulse or return energy, but you might

object well this is the case for an ∞ long transmission line and in practice you do not have An

infinitely long transmission line.

And you will  be  write,  so  consider  a  finite  length  loss  less  transmission  line  what  are  the

characteristics impedance of this one, this is the impedance with which you have to terminate the

line right. So that there are no reflections so if I take a finite length transmission line terminate in

it  is  own characteristic  impedance  I  obviously when I  send a pulse that  pulse is  completely

absorbed into that notes and 0 that you have connected and no pulse comes back because line

terminated with its own characteristic impedance.



Will give you more reflections that is another definition of a charactestics impedance right, so as

far a source is concerned again the energy is represented by this pulse is completely lost because

it is not getting anything back okay, so it is completely lost and the case is almost I mean the case

is  identical  to  that  of  an  infinitely  long  transmission  line.  So  because  of  these  reasons  we

represent the characteristics impedance of a transmission line can be represented by a resistance

or by a pure impedance pure real impedance okay, let us come back to another paradox that we

talked about this paradox was the possibility that.

If I connect my source onto an open circuited transmission line there is a possibility that my v0 +

have could have become larger  inside it  could have become ∞, when I consider a particular

length of a transmission line if I consider a λ by 4 length of a transmission line and connect a

source to it, and monitor the output voltage on the oscilloscope and do the calculations in order

to find out what is v0 + that v0 + would turn out to be ∞ of course in practice you do not find

infinities if that you could have found it would have been very nice you could have drawn power

kind of perpetual motion.

You could have performed without you know spending any amount of energy which is clearly

not possible,  so what is the resolution for the paradox I told you that the resolution for this

paradox happens either because the line is loss, okay or even if the line is lossless then for that

you consider will have an internal resistance RS okay. We will do a short calculation I will leave

the steps for you to verify that one later in your leisure time but follow the argument to resolve

this paradox, incidentally this paradox is also sometimes called as Ferranti paradox and that was

something that was observed in practice not ∞.

But  a  larger  voltage  than  the  launched  voltage  was  observed  in  early  power  transmission

systems, so what is this paradox again I connect a source okay, so I take my source which could

be a sinusoidal voltage.
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And I represent that source voltage by the phaser, please note this over bar that is denoting the

phaser voltage to this I connect or rather this voltage source has an internal resistance of RF

which it must write, which is then connected onto a transmission line which is uniform and loss

less at this end I open circuit it instead of denoting what is the length of the transmission line to a

particular number let me consider the general case and you guys can verify what would happen if

I keep changing the value of L, formally to calculate v= + I know that I have to find out the

equivalent circuit.

For this the equivalent circuit would have the resistance Rs and the source phaser voltage V

connected to the impedance that is seen by the source this impedance reading is nothing but open

circuited  transformed over  the distance L,  or  the length of the transmission line L okay the

voltage across this v in is the voltage v in which we would like to calculate, we already know

that an open circuited transmission line would transform into an equivalent impedance so this is

the first step right. So I find out what is the impedance Z in of the open circuit transforms to a

length  L if  given  by  –  jZ0  /  tan  β  into  L is  that  0  is  the  characteristic  impedance  of  the

transmission line.

So this is the input impedance that I have then once I found what is that in it is very easy for me

to  find  out  what  is  the  input  phasor,  Vin this  is  the  phaser  that  would  appear  across  the

transmission line terminal okay, cross this equivalent circuit from which we will calculate what

is V0 + V0 + being the amplitude of the forward growing voltage, so clearly this V in we already



know this is nothing but the voltage that would exist here and I know that voltage would go to a

maximum and then it would follow this kind of a magnitude would follow us magnitude of Cos β

L kind of acting.

So this voltage I know this is measured at Z = -  L at which point, we are connecting the load so

this is z = 0 for the load position open circuit and z = -  L is where I am connecting the source

okay, so this VN is given by 2 V - 0 + Cos βL I hope that you are not wondering why I got this

expression here γ L = + 1 γL being the load reflection coefficient okay, now solving this you

know or equating the voltage of four this is the voltage V in but from the equivalent circuit what

I get from the equivalent circuit this must be VS bar Z in / Z in + Rs.

Rs correct you can solve this I believe this solution as an exercise for you to verify and get V0 +

s – jvs bar z0 divided by 2 Sin βL Rs - J that 0 Cos βL  cot is nothing but 1 by tan okay, now this

is an expression for v - 0 plus let us see if our earlier choice of M equal to λ by 4 will lead to

some sort of a ∞ to appear okay, consider two cases I will consider two cases one case will be to

try and make β equal to π by 2 βL equal to π by 2 corresponds to the case of n equal to λ by 4 so

when you substitute β L equal to π by 2.

Notice what happens yes Sin of βL will become 1 because Sin π by 2 but what is caught βL I

know that pan of π by 2 goes to ∞ therefore this cot βL must go to 0, so which means this entire

term is gone right and this term has become equal to 1 and I just have this -  jvs bar z0 by 2 Rs

and if I only retain the magnitude the magnitude of this voltage is given by.
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Vs bar magnitude into Z0 by 2 Rs I am assuming that Z0 is real I am also assuming that Rs is

just a resistive load internal resistance as resistive source internal resistance and therefore Rs is

also real, so what we see is that for the case of L equal to λ by 4 our output of our v - 0 + voltage

is actually equal to a finite quantity which is given by magnitude of the source voltage Z0 by 2

Rs, now when you put Rs equal to 0 obviously V0 + goes to ∞ but clearly this is not a practical

situation because all sources in practice have some internal resistance for which you have to

account for.

So in a in a real case Rs is never equal to 0 it could be low but it could never be 0 and therefore

v-0 + could be large but it could not go to ∞ okay, consider another case for example we might

consider βL equal to π if I go back to this expression here I know that Sin of π.
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Must turn out to be 0, but then the resolution for this is to completely expand this okay, not just

leave it as Sin βL, but to expand it and you get caught of beta L and there is a Sin β L, so Cos βL

what would happen cot is nothing but Cos βL by Sin βL but when βL is equal to π cot becomes

∞, so there is an ∞ here there is a 0 here that to have to become finite, so when you expand it

through the brackets open up the bracket and expand it this term will actually go to 0 this term

will actually be this term will go to 0 this term will go to 1 and what you get again verify this

case.
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That the v-0 + voltage magnitude of this V0 + would be magnitude of Vs divided by 2 okay so

you see again that there are no infinities, let me introduce another parameter we have not really

talked  about  this  parameter  we  have  assumed  that  the  voltages  that  I  am  seeing  on  the

transmission line would be a travelling voltage wave right of the form cause, so should be of the

form Cos ωt - β into Z okay. Already I have told you what is ω is nothing but frequency which

frequency of the source which is given by 2π x f ω. 

Is the angular frequency measured in radians per second F is the frequency that is measured in

Hertz, an older notation for F was in cycles per second but the modern SI unit for this is Hertz,

okay we have also seen what is the ratio of ω by β ω by β is the phase velocity and this phase

velocity will be equal to C in air correct in vacuum or in air the phase velocity will be equal to C

okay, now there is another parameter that we normally talk of which is called as the wavelength

okay this  wavelength  is  denoted  by  λ and it  is  actually  given by the  phase velocity  of  the

traveling voltage which would be UT right.

 / SF being the frequency you can substitute for expression of UP from this one, so you have the

phase velocity being given by ω by β so this would be ω by β into F but ω is nothing but 2 π into

F, so divide this fellow by β into F clearly F from numerator and denominator cancel with each

other and what you end up is that wavelength λ is given by 2 π by β alternatively, you can also

write β as 2 π by λ. Please note that this λ inside a material will change because λ is dependent



on you P, so this is one of the other things that you should remember suppose I consider air and I

consider glass okay.

If I launch light or if I think of light and a photon then the energy of this photon would be some

H into F, where H is the Planck's constant okay what would be the energy of the photon inside

glass most people would think that the energy would be different but actually the energy would

always be the same whether you are working in air or whether this photon is propagating in

glass, so the energy of this photon will be the same H of s in glass in other words the frequency

when it goes from air to glass the frequency of the photon does not really change it does not

change what does change is the wavelength λ okay. 

Because inside  glass  your phase velocity  changes  and the ratio  of  phase velocity  to  λ must

remain  constant  because  the  frequency must  remain  constant  therefore  if  the  phase velocity

decreases lambda actually increases why am I bringing up this photon picture is because if I

consider a transmission line which maybe you know is a coaxial transmission line, so this is a

parallel wire transmission line which is filled with air as a insulating medium in between but on a

coaxial cable I can actually fill this region between the inner core and the outer or the second

copper  enclosure by some material  whose permittivity  would be epsilon R, or the refractive

index will be and we will talk about this epsilon R.

And n what it means is that, the phase velocity here will not be the same as the phase velocity in

the air  but  that  is  alright  for us because phase,  velocity  usually  reduces when I  consider an

insulating medium but my corresponding λ actually increases, there by heating the ratio to be

constant and equal to F so I hope you understand the significance of this wavelength finally, we

have  talked  so  much  about  transmission  line  but  we are  not  answered  we will  answer  this

question.
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In much more detail with all mathematical ideas later on but we have kind of not really told you

if  you know when to  apply  this  transmission  line  theory,  so  when do I  need to  consider  a

particular wire as a transmission line or when do I treat this as a simple wire I will just give you a

5 - minute idea on when we consider transmission line theory to be applicable to the wires that

we are considering in the experimental setup or in the actual setting up of the system electronic

system you basically understand one thing right.

So when we consider a particular piece of wire as a wire we are not concerned about the time

that is required for the voltage at one end of the wire to travel to the other end, where even if I

consider  this  as  my  wire  which  is  connecting  say  one  integrated  circuit  here  and  another

integrated circuit at this point, of course it would not be like this but imagine that way when the

IC changes its state maybe it goes from 0 to 1 changing the voltage level from 0 to 3. 3 volt if the

load has to correspondingly change if the load is just kind of a you knows inverter maybe for

example.

Then the inverter input voltage must change accordingly right, so that the output of the inverter

must change, but this wire which I have connected which is the interconnect that I am talking

about or the wire that I am considering, if the voltage change is immediately available at the

input end of the next IC then this wire can be treated as a wire because it has not introduced any

delay it has not changed the shape of the pulse that is that is being transmitted or kind of the

voltage that is being transmitted.



So we consider as long as the velocity or as long as the delay introduced by this piece of wire to

be very small compared to the rise time of the change of the state of the voltage source that is

connected to one end, then we usually do not consider the wire as a transmission line but imagine

that my IC is changing and it is changing or it is changing its state in about one nano second

whereas  the  delay  introduced  by  this  wire  because  of  the  length  of  the  wire  would  or  the

insulating material that I amusing which slows down the velocity the delay introduced by this

wire may be about 10 nanoseconds.

So while the voltage at one end is changing from 0 to 3.3 volt the voltage does not the voltage

end does not immediately come over here because there is a considerable delay here. And that

change will be visible to the load side only after an nano second right, so that so the load will

take some amount of time to see what is the change that is happening and while this is happening

is the in no integrated circuit changes from 0 to 3.3.

Then falls back from 3.3 to 0 then this short duration pulse will not be able to be seen by the load

side immediately okay, so that is essentially when you have to consider transmission line so in

other words since we are talking of pulses and a pulse we will have a typical frequency spectrum

right and let us say for our purposes this is the frequency spectrum that I am interested, so this is

along the F axis this is the time axis and it said this is my maximum frequency of interest okay

but I can also imagine that instead of talking about the frequency.

I  can  talk  about  the  wavelength  then  corresponding  to  this  F  max  there  will  be  a  shortest

wavelength over here, okay we say that an element is in the lump regime when the length of the

element  is  very  small  compared  to  the  shortest  wavelength  of  interest,  so  if  I  consider  this

particular pulse of some duration T then you know there will be a certain F max that one can

consider and corresponding to that F max there will be a shortest wavelength of course there will

be other wavelengths also here, but this is the shortest wavelength that you are considering and

this the shortest wavelength happens to be much larger compared to the length of the element.

So if this is my element that I am considering or just a simple wire lead that I am considering if

this  length happens to be much smaller  than the shortest  wavelength,  then we call  this  as a

lumped element  okay,  if  there  an estimate  for  the maximum frequency well  yes  the  typical

estimate for this maximum frequency is 0.25 by tr there are a few conservative estimates which

tell you that it must be 0.35 by TR depending on your application, you can pick this particular



number I will just pick 0.25 by TR as the estimate for the bandwidth of the pulse that I am

considering okay.

So this bandwidth that I am considering will have the maximum frequency of 0.25 by TR, where

TR is the rise time of the pulse, so rise time being same ad 0 to 1 volt in the normalized sense

whatever the time that is required for the voltage, to change or the pulse to change is called the

rise time. And let us say this is my rise time and this is of course my transmission line that I am

connecting there is a time delay introduced by the transmission line or let me call as this as time-

of-flight that is required, so as I said if TF is much smaller than T R then this can be considered

to be a wire.

So lumped means I consider this to be a wire so the length L must be very small compared to the

shortest wavelength but I can consider you know in engineering notation that L much less is

actually meaning to be less than or equal to 0.1 times the quantity, so when I say that you know a

person's height it is very small compared to B person's height my engineering notation is that the

height of a is only about 0.1 times the height of B of course that case, is not very nice analogy

but you think of this case okay, so left an early mean far  less is less than or equal to 0.1okay so

this is when I consider it to be a lumped regime.

So whenever my length is much smaller than 0.1 λ short I consider this to be a lumped regime

but I know what is λ should I know what is the maximum frequency assuming for, now that I am

working in a or you know the phase velocities see the corresponding λ short happens to be C

divided by maximum frequency which happens to be in this particular case 0.25 by TR right so

this would be C divided by 0.25 by TR, since 1 by 0.25will go to four times see by TR is the

shortest wavelength and L being less than or equal to 0.1 times 4 3 by TR this right hand side

quantity is nothing but 0.4C by TR.

But length is L right if I divide this length by or other so I have 0.4 C by TR, so if I take this C

here okay which is the speed to the denominator of the left hand side then I get L by C which

happens to be the time of flight from one end of the wire to the other end of the wire, so my

condition for lump regime is that TF must be less than or equal to 0.4 divided by or rather 0.4into

TF. So this is not I guess I made as mall mistake over here this should have been 0.4 C into TF so

this should actually have been point 4 C into T are in the numerator so this is actually for seat

here so please correct this one so I get TF to be less than or equal to 0.4TR.
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On the other hand my condition for something to be considered as a distributed or a T line effect

would be the other way around that is I consider some wire to be you know important in terms of

the transmission line, effect when the length of this wire will be greater than or equal to mean

much greater than λ short okay. But what is much greater than can be interpreted as 10 times the

quantity on the right hand side therefore when L is much larger than 10 times λ short but I also

know what is lambda short lambda short is, nothing but 4 C into TR into 10 will give me 40C

into T are.

So when the length of the wire is greater than 40 times ctr then I consider it to be a distributed

regime, so I can actually plot both TR and TF on this particular axis and you see that this region

corresponds to lumped region and this region corresponds to distributed region with this we stop

here and consider other affects in the next class thank you very much.
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