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Hello and welcome to NPTEL mook on applied electromagnetic for engineers. In this module we

will study what is called as rectangular waveguides as we have already discussed wave guides

offer to work at a much higher frequency and also have a larger bandwidth than a simple two

wire  like  transmission  line  structures.  The  difference  between  a  transmission  line  and  a

waveguide also we have emphasized so if you want to imagine how a rectangular wave guide

would look.

You can actually look at this you know duster, so you see here that this is actually a cubicle or

rather this is actually having a cross section which is rectangular okay, it may not here it is a

rectangular cross section this is the height of the structure and this is the width of the structure in

our usual rectangular waveguides we would find that the width is actually larger than the height

of the structures and what you have to also notice is that there is a uniform cross section along

the z axis.

This is the direction where we assume that the waves are propagating okay and this is actually a

very good model because you see this entire material the so called waveguide is actually made

out of a thing this is not a waveguide is a duster but anyway so the entire thing is actually made

out of a single material  except  for this  no dusting portion,  if  you just  remove this  one then

everything is just you know in just a wood material.

This is filled with the same wood material but in practice you would see these wave guides to be

just air filled air field is another fancy word for saying that they would be Hollow okay. So you

will have an x axis you will, so you will have an x axis you will have a y axis and then you will



have a z axis along which the wave is supposed to propagate but please remember this entire

thing is actually made out of metal okay.

So this is this is the model of a waveguide that we are going to analyze and I have already

pointed out if I were to cut this duster at various places which is, now like cutting a waveguide at

various places and examine the cross section the cross section actually remains the same. So that

is the reason why we call this as uniform waveguides okay, so how do we go about analyzing

such rectangular waveguides or for the matter. If I do not consider the rectangular waveguide I

considered a circular cross-section then I will be considering what is called a circular waveguides

right.

So how do I analyze a circular waveguide or a metallic rectangular waveguide for whatever you

know to find out the fields and find out when, what is the operating range and all the other things

right. There is in general a nice systematic way of doing this the systematic way of doing this is

to begin by separating the fields into two parts one part would be what is called as the exile part

which is the way in which the which is the field component along the direction of propagation.

So in this case either and head said for a rectangular waveguide would correspond to the exile or

the longitudinal components. Then you have the other components which are transverse to the

direction of propagation direction of propagation is Z, so transverse to the Z would mean X and y

direction. So the fields ex e / hx and hy are called as the transverse components and usually it

turns out that these metallic wave guides can be analyzed by first expressing all the transverse

components in terms of the longitudinal components.

Solve for the longitudinal component apply boundary condition and from there once you have

the longitudinal components known to you as a function of x, y, z and time okay then you can go

back and find out the other components either by Maxwell's equations or by a relationship of

transverse -longitudinal components okay. Unfortunately we will be not having enough time to

develop this method of prone analyzing wave guides in complete detail.

So I will be skipping over a few details leaving them as exercises for you they are not very hard

they just take up a little bit of time because they involve lot of algebraic manipulations okay. But

the four part methodology is what we are going to follow okay, so we will first begin by looking

at the Maxwell's equations themselves that is the zero part you might say and then the first part



would be to express the transverse components in terms of the longitudinal components okay and

then you up to solve the longitudinal component expressions for the longitudinal components

must be obtained.

Appropriate boundary conditions will be applied and once you have done that solution it is easy

to go back and find out the full solution because transverse components are already known in

terms of the longitudinal components okay. So we begin by recapitulating Maxwell is equations

or maybe even before that I can first give you the cross section that I am going to consider.
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This is the cross section of the waveguide that I am going to consider okay, so here I have not

drawn the cross section I am trying to draw the 3d picture of this, so I have 1 axis let us say axis

x which along which we have the width of the waveguide, so it is bounded by x = zero and x = a

and y along this axis is the y axis which is from 0 to B and this one would be the direction of

propagation okay. So it could be either this direction or because of the right hand rule then this

would be the actual direction I mean this would be the conventional direction.

But the wave is assumed to propagate along the waveguide itself, so in this case the wave is

propagating along - z direction or you can just redefine sent and it does not really matter what

you do alternatively you can interchange the x axis, so you can consider x = 0and x = - a and

then you will obtain the conventional z direction of propagation okay. So do not worry about

what that z axis is just look at the fact that this entire thing is actually made out of a single



conductor and inside this waveguide there is actually nothing it is an air-filled waveguide as we

would call it okay.

First step would be to recapitalize Maxwell's equations and I am going to do that one okay with

little bit of changes in the sense that I know that the waves have to propagate along the z axis

therefore along z as a function of z we would like all the field components to have a form which

is  exponential  of  -  γ  z where γ is  the complex propagation constant  in  general  okay.  If  we

consider loss less waveguide then γ will be pure imaginary being = J β in general it will also

have some amount of losses.

I mean the waveguide has some amount of losses because of the imperfect dielectric or imperfect

conducting material, so there will be some non zero value of α. Whatever that is all the field

components are assumed to have e to the power - γz dependence on the z coordinate. We will

also assume that all field components are being evaluated at a particular frequency ω okay, the

reason for that one is that any given you know function of time which is reasonable function can

always be split into its Fourier components or different frequency components.

In other words you can actually find out the corresponding spectrum and if you know how each

spectral component propagates through the waveguide then it is just an easy matter to actually

put propagate each of these frequencies and then put them back together in order to obtain the

way in which the originally pulse like function or some general function of time would propagate

okay. So this is the reason why we initially started with the phase assumption that we will be

looking at only one frequency and then expressing all the quantities as phases and that is what

we are going to do okay.

So from now onwards we will not really carry over the C J ω T because all field components are

phasers  okay  all  field  components  in  terms  of  z  will  have  e-  γ  Z okay.  For  the  rectangular

waveguide that we have assumed, so let me remove this one so let me just remove this axis for

otherwise it might be a bit confusing okay. So for this rectangular waveguide the perpendicular

or  the  transverse  components  will  be  the  components  Ex and  Ey whereas  the  longitudinal

component will  be the z component longitudinal or exile component for the electric field of

course.



For the magnetic field you will have Hx Hy and Hz in general in a waveguide all six components

are nonzero okay all 6 Ex Ey Ez Hx Hy and Hz are non zero. It is possible for us to separate out

the kind of fields that you are going to see inside the waveguide into two groups, one group is

called as the TE group or the TE modes we will define what a mode is shortly and then the other

mode or the other group is the TM mode solutions okay.

This  TE and TM breakup actually  comes  just  by the simple  thing  of  you know an oblique

incident light can be broken up in terms of its TE and TM components individually you know

you know how to you know reflect off a TE component TM component. So if I have an initial

polarization which is a combination of TE and TM break it up see how there you know reflect

from a given interface and then add them up together.

So that is essentially what we have been doing and that is true for the rectangular waveguides as

well. So you can break it up into TE and TM and it turns out that as long as the width A is larger

than the height B, usually about 2 B or something then the first group of waves that would

propagate inside the waveguide turns out to be the TE modes. So practically speaking the TE

modes are the ones which are called as the fundamental or dominant modes not every TE but

there is a dominant mode called TE 1, 0 okay.

Where we will also discuss what we mean by TM know the 1 and 0 subscripts that we have put

in but this is called as the dominant mode because as the frequency starts to increase and reaches

beyond a certain critical frequency this mode TE 1 0 mode is the first one to begin propagation

okay. So we will focus our attention onto the TE modes I will not really look at the TM modes

because the analysis is kind of very similar you will do that as part of the exercises okay.
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So what do we do with the TE modes well in the TE modes the characterization is that the

electric field component Ez would be = 0 okay. So that is the reason why we would call as TE

mores it is all transfers the electric field is completely transfers to the direction of propagation

transfers meaning it is having components only in x and y that is it has components only of x and

y. So Ez = 0 anyway so that is the transverse electric mode, so what components are remaining

now?

So you have you have Ex, Ey you have HX Hy and HZ all these quantities will be functions of x

and y but all of them will be functions of z in just a single manner that is of e power - γ said

okay. Now you can actually look at an additional you know result because of the dependence of e

power - γ said what would be d by dz or let us say the partial derivative del by ∇ Z of any field

quantity whose z dependence will be in the form of e - γ Z and the field dependencies of x and y.

Well this is a function of x and y therefore this would not change anyway but because ∇ / ∇ z of

e - γ Z would simply pull out - γ leave the other things as it is field of x,y  e - γ Z. So this is the

original field component that we looked at as a function of x y & z but because that by ∇ said is

there it would pull out - γ and you get - γ field of this quantity okay. So I can replace wherever in

the curl operations that I get or in any of the other operations ∇/∇z with – γ.

I  can also replace  ∇2 /  ∇z2 with γ  2 obviously because γ will  be pulled out twice from the

differential so that would be - γ into – γ, so that would become γ 2 okay. With this setting let us

write down the curl equation, so I have ∇ cross e is = - J ω μ x H okay. So this is the point form



of Faraday's law that we have written and then the second curl equation is Del cross H will be = J

ω ε e okay.

Why because there is no current inside the hollow medium there is no wire which is actually

carrying a current or there is nothing like a conduction current present inside whatever current

that  is  there  inside  the  rectangular  waveguide  that  has  to  be  displacement  current  and

displacement current is ε ∇ e /∇ t ∇/ ∇ T is in phaser or notation J ω. So that is the reason why

you have J ω ε times.

So the waveguide is filled with mu and ε initially we have assumed that these you know can be

air or can be anything else but whatever it is essentially something that would not support any

conduction current ideal and dielectrics is what we have assumed. Usually as I said it would be

μ0 and ε0  but let us be general and then say it could be any μ and ε it could be filled with some

class or something else but as long as they have a constant value of mu and ε and these do not

have any value of σ this theory that we are going to develop will be all right okay.
Otherwise you will have to make a little bit of modifications okay write down the curl equations

for E and curl equations for head separately all the time realizing that ∂ / ∂ Z can be written as –

γ. So if you do that and also realize that ez is equal to zero you get two groups of equations so

you get γ ey when I write e Y I obviously mean that it is a function of both x and y as well it is

not a function of said because well the set dependency is - γ we have already taken it out right. 

So this would be equal to minus J ω µ HX okay then you have –γ e x - J ω µ H Y then you have

∂ e Y / ∂ X well unfortunately I cannot simplify this because I do not know how ey behaves with

respect to X nor I know how e X behaves with respect to Y therefore this I cannot remove. So I

will just keep it as it is I have a second group of equations coming from ∂ cross H that would be

∂ HZ / ∂ Y+ γH Y = J ω ε e X then you have -γ H X - ∂ HZ / ∂ x = j ω ε EY finally I have ∂ H Y /

∂ X I do not know how they behave with respect to X or with respect to Y.

So I will just keep them as it is but luckily this is the equation now these equations are all mixed

in terms of EY EX HX HY and HZ what I would like to do is to express EY purely in terms of

HZ or it is derivatives and I can do that in order to do that when I just have to combine a couple

of equations. I know how to express a y in terms of HX from this expression correct and this

expression here has HX on the right hand side it has a component HX there is an e by here if I

write down e Y in terms of head or other HX in terms of e Y substitute into this second equation



that two equations are linked kind of a thing right so substitute into one then I will obtain YY in

terms of HX.
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So if I do that what do I get I already know how to express HX so I will have minus γ / j ωµ so

HX is actually this so if you are not convinced you can look at this one HX = - γ / J ω µ x correct

I go and substitute that into the other expression so substituting this into the other expression

which I have marked will give you γ2 / J ω µ ey – j ω ε times ey = ∂ hz / ∂x I can take a as a

common factor out so I will get γ2 + ω2 µε  x ey = j ωµ ∂hz / ∂x or finally ey = J ωµ/ h2 ∂hz / ∂x

where H square is what we have defined this quantity γ2 + ω2 as okay.

So I have defined this as H2 so this is by definition so what I have done is to start with the

Maxwell's equations and somehow be able to express all the or at least I have shown you how to

do it for one case I will leave the other expressions for you to find out so how do I represent the

transverse components in terms of the longitudinal components okay you can then show I will



leave these as exercises for you can show that e X can be written as- J ω µ / h 2 ∂ hz / ∂y please

note that electric field ey will have ∂hz / ∂x electric field e X will be ∂ hz / ∂y.

Similarly H X will be equal to – γ / h2 ∂hz / ∂x  / and then finally you have h y – γ / H2 ∂ hz / ∂ Y

okay so I will leave these as exercises for you to show that again you just have to combine a few

equations and you will be able to find this out okay. So at least our problem is simple right I just

need to solve for headset so if I only need to solve for hz or what I can do is to do so equation 3

you know on this  one  I  can  actually  differentiate  this  one  with  respect  to  X right  so  after

substituting for the equation e Y and substituting the equation for e X from the ones that we

already have I can differentiate this one with respect to X and differentiate this one with respect

to Y and put the two solutions together then what do I obtain I obtain ∂2 Hz  / ∂ X 2 + ∂2 Hz / ∂

Y2+ H2 hz = 0 okay.

So all I have to do is go back to this equation and then substitute for e Y I know ey is equal to J

Ω µ by ∂ X I mean H square I do not have differentiate I just have to substitute for e Y and then

substitute for e X into these expressions because ey will be J Ω µ by H 2 x   ∂ hz / ∂ X there is

already a∂ by ∂ X over here so this fellow will become J Ω µ /H2   ∂2  hz /  ∂ X2 okay. Similarly

you can show what will happen to this one combine them pull them together and you will be able

to find this okay leave this also as an exercise incidentally this equation is called as Helmholtz

equation okay.

So what we have done is to derive an equation for headset in these equations headset is actually a

function of x and y okay so we do not really put the function of Z because we already know how

it would go as a function of Z now how do I solve this equation having met this equation earlier

yes we have met this equation earlier if you remember in the Laplace's equation solution right we

had solved equations which were similar to this so you had ∂2 e / or ∂2 V / ∂ X2   + ∂2 V / ∂ Y2

equal to some term in the poisons equation that was equal to some right hand side equal term

which was a source term.

And we applied a particular method called as variable separable method we in fact did this for

that infinite squared rough problem right so we did this problem of variable separable where we

showed if you have a single component whether it is the voltage V or HZ which satisfies this

particular you know type of an equation partial  differential  equation then you can write that



component as product of two functions one of which is function of X alone and the other one is a

function of Y alone okay.

(Refer Slide Time: 21:24) 

So what we mean there is that HZ as a function of x and y can be written as X of x and y of Y

and  you  can  substitute  these  expressions  into  the  Helmholtz  equation  and  then  obtain  the

resulting differential equation second order differential equations ok when you do that you will

get d 2 X / D X 2 equals some minus KX 2 X and d 2 Y / dy2 equals some minus KY2 Y okay such

that the constraints - KX2 – KY2 +h  2 should be equal to 0 or H 2 = KX 2 + KY2 since H 2 is

nothing but γ2 + Ω2 µ∂ right so I can write this as γ2 equals or γ equals the complex propagation γ

is equal to √ KX2 + KY2 - Ω 2 and of course I still do not know what is KX and KY.

But I will be able to find that one out by solving these equations individually now these are

simple second order differential equations whose solutions I know X of X will be some a X sine

KX of X plus some B Y or rather be X cos KX of X because of the second-order solution which

is this one similarly Y of Y will be a Y here it is the same thing except that KX is replaced by KY

and it X replaced by Y plus you have dy cos K Y into y the full solution for head side as a

function of x and y is given by X of X into y of Y okay.

Now this we have completed is in this second part now what do we do well we need to apply

boundary conditions so what sort of boundary conditions we should apply we have boundary



conditions for the magnetic field but the magnetic field tangential component boundary condition

means that I have to know what is the surface current since I don't know the surface current and

surface currents can exist no current can exist in the hollow region but on the surface currents

can exist because of system metal right but I do not know what is that surface current so I cannot

really apply the conditions for the tangential component of the magnetic field.

But on a metallic perfect electric conductor the electric field tangential component must go to

zero so I know that equation and in this example that we are considering the TE mode there are

only two components ex and ey and there are four walls that I need to consider right left wall

right  walled  bottom one  and  top  one  and  I  have  to  find  out  on  these  walls  which  are  the

components  which  are  tangential  and  apply  the  boundary  condition  that  that  tangential

component at that particular wall must go to zero right. So let us go back and write down the

cross section.
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So this is the cross section that I have so this is the this is y equal to this is the Y then this is y

equal to B so this is zero and this is along X this is equal to a so I have this wall here bottom

right top and left wall okay so on this one what is the change that is happening the X is actually

changing but Y is equal to constant right so on this one y is equal to 0 how is how are the electric

field e ex and ey oriented e X is along this way but ey will be oriented this way right it would be



going from bottom to the top so it would be vertical out there so clearly this is not the tangential

component this is the tangential component so I will put a tick mark against that okay.

So my boundary condition is that e X at y = 0 µst be equal to 0 okay similarly if I look at what is

the  tangential  component  here  again  the  x  directed  component  is  tangential  the  Y directed

component would still  be vertical whether it is up or pointing up or pointing down does not

matter it is still vertical out there so the other boundary condition that I am going to obtain will

again depend only on this eX and I have e X at y equal to a equal to zero okay.

Similarly for the right wall and for the left wall you can see that this is e X whereas this one is e

Y so  obviously  this  is  the  tangential  component  e  X  is  normal  here  ey  is  the  tangential

component I can put it right, so I will have EY at X equal to 0 being equal to 0 ey at X equal to a

is also equal to 0 as my problem solved well not really I need to know what is ex and ey but I do

not know ex and ey except that I know e ex and ey through this relationship I know ey as J Ω µ /

H 2 ∂hz / ∂ X I know what is HZ, HZ is X of X into y of Y where X of X is this Y of why is this

so if I differentiate this one with respect to X then I will get e Y component and multiply it with

some J Ω µ by H2.

Similarly if I multiply by some constant and then differentiate this expression X of X Y of X I

mean H set of X Y by Y then I will get another I mean I will get a component for EX component

right so if I do that what I obtain since e X is proportional to H Z /∂ Y and ey is proportional to

∂hz / ∂ X okay and substituting for y = 0 so what will happen is there is a component here sine

KX of X so differentiating sign will give you cos pulls K X out but then differentiating cos will

give you sine and pulls minus KX out right.

So similarly it will be for Y as well so there will be a minus sign in the differential x’ of x and y’

of Y you can actually show that one right and then apply the boundary condition now here I am

going to leave this as an exercise for you so when you apply the boundary condition at y = 0 you

will see that even a very interesting thing when you apply y = 0o you will see that a Y is zero

okay but when you apply the boundary condition at y equal to B when you apply the boundary

condition this means that KY x B must be equal to some integer multiple of π because there will

be some sign of component right. So there will be K Y x B = n π which actually gives you the

value of K Y given by n π / B okay 
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Similarly if you apply the boundary condition at X = 0 and X = 8 you will find K X a equal to

some integer multiple of π, so that K X itself is equal to M π/ a and these values are now known

because a is known π is known m and n are in your control the mode that I mentioned te10 is

actually obtained by putting m=1 and n= 0 okay and then what happened to γ=√ kx2+ky2-ω2µ but

this is kx2and ky2 square are nothing but √mπ/a2+nπ/b2-ω2µ what kind of a γ do you want you

want γ  to be pure imaginary right γ  to be pure imaginary for a lossless propagation right.

When  will  this  square  root  thing  become imaginary  right  or  when will  this  fellow become

imaginary  when the quantity  here will  be greater  than ω2µ or sorry less  than Ω square mu

epsilon correct so that when that happens you can rearrange the equation and say γ equals J

β=j√ωµ-mπ/a2+nπ/b2 let me put this inside the root inside the bracket so this right hand side of

this  expression  j√ωµ-mπ/a2+nπ/b2 right  will  give  you  the  propagation  coefficient  or  the

propagation constant of the modes.

Okay and this has actually happened under the condition that ω2µ>mπ/a2+nπ/b2  okay if I define

this quantity in what is this nπ/a2 and nπ/b2 if  I define this as sum ωc2µ because it is just a

constant I can redefine it as ωc2µ and please remember ωc will depend on M and N okay so ωC

actually depends on M and N  on mu and epsilon of course this does not depend on that one and

since ωc is nothing but 2 π FC right this FC is what we call as cut off frequency so only when the

applied frequency or the operating frequency actually exceeds the cutoff frequency then γ  will



become pure imaginary which means there will be lossless propagation inside a waveguide as

long as the frequency is less than the frequency cutoff frequency for that value of m and n.

Because this actually changes with M and N right so if you if your operating frequency is less

than the cutoff frequency for that given pair of numbers m and n then that particular mode will

simply be attenuating it will never propagate okay so that is the reason why sometimes you know

these  wave weights  are  called  as  high-pass  filters  or  exhibit  a  high-pass  filter  characteristic

because when the frequency is less than the cut off frequency.

For  the  given  mode  number  m  and  n  there  would  not  be  any  propagation  only  when  the

frequency exceeds the cutoff frequency then that particular mode actually begins to propagate

and the TE 1 0 mode is the mode which will propagate but the lowest frequency possible.

So given a rectangular waveguide of certain cross sections the lowest frequency cutoff frequency

occurs for the so-called TE 1 0 mode where m is equal to 1 and n equal to 0 we will see what is

that cutoff frequency well cutoff frequency.
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 Is  ωc2µ=mπ/a2 +nπ/b2 right  so  this  is  in  general  now  I  can  write  down  what  is  ω  C  or

equivalently I can write down what is 2 π FC this is 1√µ√mπ/a2+nπ/  in these equations this Π

and π can be π removed outside the square root so when you remove them outside the square root

it becomes π that π can be cancelled off with this π okay so essentially I can cancel off this so FC

the cutoff frequency which is actually dependent on MN and sometimes I will use the upper

script to just denote that this is a quantity that depends on the more number m and then this is

given by 1/2√µ√m/a2+n/b2.

If you had instead of a waveguide if you just had the medium as it is and just you know imagine

that the waveguide has a width a going off to infinity and width or the height B going off to

infinity then it is just a medium in between with µ and epsilon and if you launch a plane wave

then that plane wave would propagate with a certain phase velocity given by 1/√µEpsilon and if

µ is equal to µ naught epsilon is equal to epsilon then that velocity will be the velocity of light in

free space right that would be seat speed of light in general.

Let me call that as up0 where u p0 denotes the phase velocity of the medium with the waveguide

walls moved to infinity and the medium is essentially you know consisting or characterized by µ

and epsilon values itself so that could be up0 so this is u p0 by 2 m by K whole square n by B

whole square under root okay I promised you that t10 is the fundamental mode I will show you

that one okay  when M = 1 and M = 0 what will happen to this expression here this expression

will be u p0 divided by 2 because n= 0 so that will be gone and this is equal to this.

So the cutoff frequency FC1 0 will be u p0 by 2 a okay now suppose you try M= 0 and n=1this

would correspond to the mode te 0 1whereas this corresponds to the mode te1 0 right so what

would be the cut off frequency here FC of 0 1 is equal to up 0/ 2 B well we have already said that

a is greater than B because a is greater than B and a and B appear in the denominator rather than

in the numerator the cutoff frequency of FC 1 0will be less than the cutoff frequency of FC 0 1

okay.

So this is true for at y π cal waveguide that we consider the cutoff frequency for the 1 0 mode

will always be lower than the 0 1 mode you might question whether M = 0 n = 0 condition is

possible well let us go back and look at the expressions X of x and y of Y ok so you had H of Z

to be equal to X of X into y of Y so in this we have also seen after applying the boundary

condition where we had applied a Y is 0 and similarly I had shown you I think a X is also 0 okay



so yeah I is also 0 that would have come from this expression I think somewhere over here okay

I have not mentioned but please note that 100k X is also zero.

So if I go back to these expressions a X is zero ay is zero so the equations are not containing the

sign terms they will contain the cosine terms okay but our electric field components are actually

do you know proportional to the differential of these quantities right Eva is proportional to Delta

set by Del X which means they will be of the form sine KX into X sine K Y into y and when

M=0 and n  =0 then  what  will  happen KX will  be  zero  K Y will  be  zero  so  electric  field

components will be completely zero so the condition that we had here M equal to 0 n equal to

zero can never occur in practice.

Because this condition is the most trivial condition which tells you that there is no field at all

okay you cannot have just a magnetic field right you don't just have h xh h way and head said

because it is a time varying scenario and eye and e^x because they are proportional to sine KXx

and sine k YY if they are not present if m is equal to 0 and n equal to 0 both are 0 then the total

field will actually be equal to 0 okay so please keep that in mind and therefore this F c10 the

frequency t10 whose cutoff frequency is FC 1 0 is called as the fundamental or the dominant

mode now I have used the word mode a lot of time so what is the mode that I'm talking about

mode is just a pattern of the electric field or the  magnetic field depending on what you are you

know what you would like to use it or sometimes the pattern of the power itself the pointing

vector itself.

But more or less it is taken as the way in which the electric field pattern looks like as a function

of x and y so in the cross section of the waveguide that I have what is the way in which the

electric field whether it is how is it distributed please note that this distribution is governed by

two things one is by Maxwell's equations right because that will tell you how the electric fields

are actually you know propagating inside the waveguide and second the way this particular fields

are you know range is determined also by the boundary condition okay so you will see that the

mode shapes for the TE 1 0 mode will be slightly different for T 0 1 t20 and what not other

modes.

And if you replace the metallic wave grades with dielectric waveguide such as optical fibers in

the  modes  will  be  different  ok  because  it  is  not  just  the  Maxwell's  equations  which  are



determining the modes but also the boundary of the waveguide or the boundary conditions that

you need to impose okay.

(Refer Slide Time: 38:31)

Let us go back we are not completely done with the wave guide solution out there so far we had

considered the general te modes but we know that TE 1 0 is the dominant mode whose cutoff

frequency FC 1 0 is given by u p 0 divided by 2 a correct so we have already seen this one with

that and with the fact that HZ of x and y will be some constant right cos of KX x okay with n

equal to 0 that cos of K Y into y will be equal to 1 okay so this will be cos of KX and what is KX

here we are looking at em equal to 1 therefore this must be equal to Π by a for the TE 1 0mode

KX is equal to Π by a therefore this would be caused by by a into X and in terms of Z it would

be a power minus β into Z where beta we have already determined from that expression.

And this would be some constant which we will call as constant H 0 right if you are not happy

with the constant well you know this is the constant that would be BX into or rather be X into B



Y something like that right so BX into B Y that would be the constant that would be left out we

simply put all of them into a single constant h0 okay now I know that  is proportional to Delta Z

by Del X and E X is proportional to Delta Z by Del Y right it is just proportional because there

are also factors of J Ω mu by γ square or not γ  square it is J µ mu by H square right H is the

quantity  I  think  so  let  me  go  back  and  correct  that  one  for  you  so  that  is  J  µ  it  is  the

proportionality constant is J Ω mu by H square but now H square is actually equal to γ  square

plus µ square µ epsilon right but γ  is actually pure imaginary so that would be minus beta square

plus Ω square mu epsilon so this is actually µ square µ epsilon minus beta square okay so you

can actually put that one down out here.

And instead of this you can look at this also you know that β square is equal to Ω square mu

epsilon minus KX square plus KY square in the TE 1 0 mode KX KY square is actually equal to

0right because KY n equal to 0 so µ square minus beta square is actually equal to KX square KX

square is nothing but Π by a whole square so you can actually put all these constants and then

show that the corresponding you know the corresponding component a Y will be equal to minus

Jµ minus because there would be some term that would be coming out in the negative sign there

in the in the solution you can show that times H 0 find Π by a into X e power minus J β Z luckily

or unluckily you do not have X component in this case.

So X is actually equal to 0then you have H X component given by J β a by Π H 0 sine Π by a X

E power minus J β times Z okay then finally Hz although I have written already Hz what it is, Hz

is H0 cosπ/a x e-jβz okay, what about the other components that we have so Ex0, Ey0, Ez anyway

is equal to 0 because this is th TE mode and then turns out that Hy you will also be equal to 0 for

TE10 mode okay, so these are the conditions for TE10 mode as you can you know derive and then

show that these expressions are correct. Now I would like to take a look at this expressions okay,

especially look at this Ey and observe how it is actually changing with respect to x.

The corresponding you know way it which is changing with respect to x the function is actually

is a sin function that it make sense well it does, because remember Ey is tangential to two walls

which are those walls they are the side walls right, so you have the side wall over there which

was at x=0 and another side wall at x=a, correct. And of course you had the other two walls

along y=0 and y=b.



But on x=0 and x=a Ey have to go to 0 so essentially its amplitude would be 0 at this point,

similarly amplitude of Ey at x=a must also be equal to 0. What sort of functions trigonometric

function that can I fit into this one. Well, I can fir in a nice half a side right, such that sin of x=0,

sin of x at π will also be equal to 0, right. So I can fit in this way and I can also fit in a different

one, I cannot of course make this 1 because it is on 0, so the other way I can fit this function

would be to fit this way one complete sinusoidal right.

And what is stopping means from fitting other type of functions, well I can fit this one as well.

So I can fit any number of integral half, any number of half multiples of the sin wave that is or

the multiples of half sin wave okay, the most fundamental mode will be the one that will actually

fit with only a single half cycle of the sinusoidal signal and that happens to be the TE10 mode, so

this component will actually be for TE10 mode and these are the higher order components, okay

so these are the higher order modes are nor components where the higher order modes, okay.

There are a few definitions that go with wave guides that we should be familiar with, we define

λg okay,  as the guide wave length  and this  guide wave length  is  actually  something that  is

measured along the z axis which is the direction of propagating modes, right so the modes are

actually propagating along the z direction and this is given by 2π/β, β is actually the propagation

constant which tells you how it is, how the phase factor is changing with respect to z, but I know

what is β in terms of ω right, so β is actually given by √ω2με-ωc2με because I just wrote that

kx2+ky2 in this fashion, I can pull this ω2με and as a common factor so I will actually have ω√με

for β I am writing inside it would be √(1-fc/f)2 okay.

(Refer Slide Time: 45:26) 



So now what is guide wave length λgz=2π/ω√με √(1-fc/f)2 okay, what is 2πω√με now, ω is 2π.f

correct and 1/√με is nothing but the phase velocity of the free space media that we consider, so

up0/f into this factor 1/√(1-fc/f)2 okay, what is up0/f it is actually the you know wave length of a

wave which is propagating in the medium characterized by μ and ε correct, this is the velocity,

velocity by frequency is the wave length, so this is actually operating wave length λ0/√(1-fc/f)2

okay.

What would be the phase velocity, well phase velocity will be related to the guide wave length

because the phase velocity is the velocity with which the wave is travelling along the z direction

that is the direction in which the wave is propagating so you will have to calculate the wave

guide length along the z direction and multiply by the frequency, okay. It is not calculated in the

direction normal to it I will come back to that in a moment but the phase velocity that we mean is

the velocity.

With which the wave is propagating along the z direction and for that one you have to just

multiply the frequency and λgz and if you do that you will see this is given by up0/√(1-fc/f)2 it is

a problem well what will be μ when μ=μ0 and ε=ε0 in that case up0 which is the phase velocity

of the medium will b equal to speed of light so what we say is that the phase velocity is equal

c/√(1-fc/f)2 right.

What  is  f  and fc,  how is  f  and fc related,  f  is  actually  greater  than fc so which means the

denominator here will be a quantity less than 1 if this is less than 1 then the phase velocity is



actually greater than c, does it violate relativity Einstein’s relativity well it does not really violate

Einstein’s relativity because the wave which is propagating with this phase velocity is carrying 0

information.

The information is actually carried at a different velocity called as group velocity which we will

meet in the next class okay, or in the next lecture but for now vg the group velocity defined as

dω/dβ that is not the ratio of ω to β as it could be but this is dω to dβ and it terms out to be

up0√(1-fc/f)2 okay, so luckily we have a relationship which tells you that the phase velocity and

the group velocity, groups velocity is the you know velocity with which the wave is actually

propagating on a carrying information so this is given by up02, so this relationship always holds

phase velocity by itself does not mean anything, okay. 

(Refer Slide Time: 48:51)

Well, we have waves and we know that we can actually form the ratio of this wave components

or  the  field  components  that  are  there  and when we form the  ratios  of  electric  field  to  the

magnetic field we end up with impedances right, so we have a TE impedance which is defined as

–Ey/Hx okay, this –Ey/Hx is simply because the wave is suppose to propagate along z direction

so the impedance also a student such the rate kind of points into the z direction.

So the impedance ZTE is –Ey/Hx and you can substitute from the previous value of pervious

expressions for Ey and Hx and show that this can be written as ωμ/ω√με and this factor √(1-fc/f)2

factor okay, ω and another cancel out μ/√με is nothing but the medium impedance η0 okay, so η0



is √μ/ε/√(1-fc/f)2 okay, so this is how the TE mode would actually be present and if I, I have only

shown you the expression with fc I am nothing but the values of m and n but you have to putting

the values of m and n to figure out the appropriate frequency cut off frequency and for a given

operating frequency form this √(1-fc/f)2 factor and then multiply or divide η0 by that particular

factor okay.

So this impedance is actually dependent both on m and n of course I would not show you this but

the impedance for TM case you will actually be η0√(1-fc/f)2 so in fact if you measure the TE

impedance and TM impedance you can actually measure what is the free space mode η0, okay.

Now w have talked about wave guides, wave guides carrying information but the wave guides as

they carry fields they also carry some amount of power, right.

The power carried along the z direction is obtained the time average power that is carried along

the direction is actually dependent on what mode you are propagating, for the TE10 mode so

average power the time average power that is being carried so let me write this out, time average

power that is carried by the TE10 mode is given by integral of the z component of the pointing

vector over the cross section of the wave guide, what is the cross section of the wave guide x=0

to a, y=0 to b.

And you can show that one what should be the fz component, fz component is given by Ey x Hz

correct, or –Ey x Hz because that is the one that would correspond to the z there is another Hz

component but if you take Ey x Hz that would be along the z direction so that would not give

you the z directed pointing vector, so you do not want this when, we just want to –Ey x Hx and

because Ey is proportional to sinkx, x where kx is π/a, Hx is also proportional to the same thing

and these two are independent of the y you know co-ordinate.

You can put in the expressions for Ey and Hx from the previous you know slides that we have

put in or may I have shown you that you can show that this power carried the time average

power carried will be given by ωμβa3b that is dependent as a3b and the constant H02/4π2 okay.

Now in fact,  this  is  used this  expression is used to fix the value of constant H0, okay why

because you know normally how much power you put into the wave guide and once you know

the power you can actually find out what is H0 the field strength and then you go back and plot

the values of H0 everywhere.



So I would like to  finish with the  TE mode here,  and I  would like  to  also while  I  am not

discussed TM mode but I just like to give you the intuition of what form of the fields you can

actually obtain if you just know the cross section and know the boundary conditions, okay. So it

go back to the cross section over here.

(Refer Slide Time: 53:16)

So this is the cross section of a wave guide right, if I am looking at Ey component where I want

both Ey to be function of x and y and Ex component to be function of x and y, as well as Ez

component  for  example  if  I  am  looking  at  the  TM  mode  I  need  to  know  what  is  the  Ez

component as well, right. How do I write down the form of the solutions without actually solving

Maxwell’s equation.

Well  boundary conditions,  how does E so let  us also not just  show the cross section is also

extended because I want to show you EZ as well. We have already seen what will happen to Ey

at x=0 and t x=a right, so you need to have the form of a solution in the form of sin some kx into

x or ky into y right.            

So this is at X= 0 and x=a so you need to have that kind of a thing right. now how about Ex

component Ex component is actually tangential onto the y=0 and y=b walls that is for the lower

and upper pulse so therefore they must also have a sin type of a function right, what about Ez

well is it is tangential to the components so because easy is you know along this one it is actually

tangential to the component along the x=0 as well as to the component I mean as well as to the



plane or the wall at x=a moreover is it is also tangential at the top and the bottom walls okay, so

Ez component will be sin some KX x sin kyy okay,  whereas Ex component being tangential

only at y=0 and y=b will exhibit a sine nature okay.

Further why so I will write down here so sin nature for the y but it would actually exhibit a

cosine nature for the x component I have not shown it for the other modes you know even in the

TE other more T21 for example if you value it you will see that this is the form okay, same for

Ey as well so Ey will be tangential along the x direction that is for the x=0 wall and x=a wall

therefore it would be sine kx x whereas it would be cos ky y okay.

Of course the real reason why you solve Maxwell's equation and go to all that lengthy procedure

is because you do not know all these constants and without these constants you really cannot find

out all the other values of impedance and other things right, so you still need to learn how to

solve the general waveguide with the steps that we have talked about but intuition should tell you

where your whether you are getting the right solution or the wrong solution with this, thank you

very much. 
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