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Hello and welcome to NPTEL MOOK on applied electromagnetic for engineers, in this module

we  will  continue  the  discussion  of  wave  propagation  inside  a  good  conductor  by  a  good

conductor  we mean that the conductivity  of the material  or the conducting material  is much

larger than the product ωε, where ε is the permittivity of the material ω is the given frequency of

the wave that is propagating inside the conductor.

We will touch upon a very practical and important topic of skin effect which tells us under high

frequency conditions what will happen to the current flow inside these conductors, whether the

current will be uniformly distributed throughout the conducting medium or whether it would be

not  uniformly  distributed  through  the  conducting  medium,  this  has  no  practical  importance

because if you are designing systems at very high frequencies you want to know what is the

current flow inside the conductor so that you can actually use the right amount of conductor.

If  for  example  the  conductor  seems  to  have  been  there  enough  flowing  entirely  near  the

boundary then there is no point in having a 10 meter thick conducting wire, because most of that

conducting material will not carry any current. However, if it turns out that the current is uniform

so then the entire 10 meters of thickness of the conductor will carry current and therefore you do

not have any savings on the conducting material okay.

So that is determined by what is called a skin effect and we will talk about skin effect, we have

already talked about how a wave would propagate inside a material which is a good conductor

right,  we have seen  what  will  happen to once  you start  from Maxwell's  equation  what  will

happen to the propagation coefficients the propagation coefficient will turn out to be complex



with the real part having the attenuation component and the imaginary part having the phase

coefficient right, so just to refresh your memory.
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In the case of a good conductor material propagating insider in general a conductor first then the

propagation constant γ will become or the propagation coefficient γ will become complex it is

given by √Jγμσ+jωε if you split this itself into its real and imaginary components you will obtain

some α and β, where α  will be the real part of γ and then β  will be the imaginary part of γ, this α

tells  you  how the  waves  are  attenuating  because  we  have  assumed  that  the  waves  as  they

propagate along the z axis will propagate as e-γZ okay.

So in place of γ if you now substitute for α  and β  we will have e-αz  and e-jβZ this factor we

already  know simply  allows  you  to  determine  what  is  the  phase  delay  that  is  the  wave  is

experiencing with respect to a certain reference phase whereas e-αz corresponds to the attenuating

factor the amplitude of the electric field or the magnetic field attenuates as the wave propagates

inside the conducting material okay.
For the case of a very good conductor is much larger than ωε therefore γ can be rewritten as jω

approximately can be written as jωμσ and we have already shown that this can further be written

as  1+j/√.√ωμσ we  also  denoted  by  the  variable  ∆  okay,  we denoted  this  variable  ∆√2/ωμσ

therefore γ=1+j∆ okay so1+j/∆ okay which indicates that α  is 1/∆ and β  is also equal to 1/∆

okay, so the wave experiences phase shift as well as the wave experiences attenuation.



(Refer Slide Time: 04:31)

Now consider this kind of a scenario where we assume that the direction of wave propagation is

along z axis and we take this one to be the x-axis and we have this plane which extends all the

way from -∞ to +∞ but this is located at z=0  separating two regions below this z=0 the entire

medium below this particular plane is made out of a good conductor okay, so this entire thing is

made out of a good conductor where σ is much larger than ωε  and above is a perfectly insulating

material as an example we will simply take this one to be air.

Now when there is a plane wave propagating so it has a certain electric field component and the

direction of propagation which is along the z axis so the wave has an electric field which we will

assume to be having the x component clearly the magnetic field would then be along the Y

component correct so the pair Ex and Hy will have a certain ratio of the medium impedance

inside the air, okay.

Now imagine  this  wave know steadily  approaches  the  interface  and at  some particular  time

which we do not really worry about at what time this happens because we are only going to look

at the steady state, we have the situation that the electric field or the wave has actually landed

and is now incident on the conducting boundary, so it z=0 any value of Z below or greater than Z

equal to 0 right, will then be completely a conducting surface and on that conducting surface the

electric field is oriented along the x direction the magnetic field is oriented along the Y direction

the wave has now incident on the conductor.



At the surface we will assume that the amplitude of the electric field is given by E0 okay and the

amplitude of the magnetic field is given by H0. Please note that we are only considering a good

conductor we do not let σ go to ∞ at this point which represents a perfect conductor okay, we do

not have a perfect conducting situation here we have an imperfect conductor but that imperfect

conductor is also a very good conductor in the sense that its σ is much larger than ωε.

Now what really happens in this case, well you should first of all raise an objection saying that

we  have  not  really  considered  the  scenario  where  a  plane  wave  is  impinging  on  another

conducting material and what happens as a result of that, you will be right we have not really

addressed the situation of what happens when a plane wave hits a particular medium and what

changes happen inside the first medium and inside the second medium as such okay. 

But we will disregard that problem, because we are not really looking at what is happening to the

medium or the fields inside the medium in from in the air side we are interested in what is

happening once the plane wave hits and has a value of the electric field at the surface as E0 and

the magnetic field is at 0 what happens once that wave starts to propagate inside the conducting

medium, of course you know that that wave has to decay in amplitude okay.

Now let me show you what is known kind of the picture that I want you to carry forward for the

next few you know minutes so that you really understand and appreciate what is happening to the

skin effect. Imagine that this is the conducting media of course this should exist all the way to ∞

and all the way to ∞ this medium is air  and the wave now appear I mean the wave is now

incident and lands on this conducting media so this surface which you can see on the top will

separate the media air and conducting material below, so all this wooden block you can think of

this as comprising of the conducting material.

Now where is the what is the direction of the electric field on this surface well the direction of

the electric field is along the X direction, so this is the X direction of the electric field that we

have which is indicated by my fingers pointing to that you cannot really see but my thumb or

now you can see the thumb indicates the direction of propagation okay, so on the surface these of

course my fingers are not uniform.

But you have to assume that all the fingers should have the same length because you are actually

looking at a uniform electric field, the electric field amplitude does not depend on the value of X



okay, so on the surface it has a constant value of E0. Now what happens as this wave begins to

propagate well, you can imagine that as the wave begins to propagate because of skin effect the

amplitude of the electric field starts to reduce as a function of z right, so it goes as exponential of

–Z/∆.

So this is the length on the surface the length reduces the reduces, reduces, reduces, reduces

eventually but I think an exponential decay at ∞ the amplitude would be equal to 0 so this is all

the electric  field.  Now in a conducting material  the relationship between electric  field E the

conducting conductivity of the material σ and the current density j is well known this is the point

form of Ohm's law that we already know J equals σ times E.

So if this is the variation of the electric field inside the material so should be the variation of the

current density J on the surface you have the current density J0 which is given by σ times E0 and

this J vector or the amplitude of the J vector starts to reduce, reduce, reduce eventually going

towards to 0 at Z=∞ okay, this was all about electric field, what about the magnetic field now

magnetic field will be along the y axis, so in this case assume that they are coming towards you

as you look at the screen so this is how on the surface you have a uniform magnetic field H0 and

then this reduces in amplitude as it goes down and eventually goes off to 0.

So at Z equal to ∞ you do not have an electric field you do not have a magnetic field nor you

have the current density because all the amplitudes of these quantities have gone down to 0. Now

if I ask you what is the total current that is passing through a particular plane which I will obtain

by cutting through this material in this way so you have to imagine that I am cutting the material

through this way and exposing this particular cross section okay along Y I go a certain distance

W okay, so maybe this is y equal to 0 where the point I am showing this is Y=W and then you

take this edge you know you keep going inside right inside the conducting material you go all the

way to ∞ come back up parallel to this loop or to this line and then comeback on to this edge to

meet back at the surface okay.

So along Z you go to ∞ then go and on -y direction then come back and then do this now clearly

there have to be some amount of current that is flowing through this open surface because my J

vectors are all crossing this okay, on the surface the J vectors are uniform but then they reduce as

you go down to the conductor. Let us calculate what is the amount of that current that is obtained

by cutting the plane, so I am I will show you a kind of a way to you know this is the loop that I



am but I have drawn and I have actually illustrated that one to you by this example of the duster

okay.

We call this loop let us say we name this loop as ABCDA okay, the J vectors are all coming out

perpendicular to this loop because the J vectors are all along the x axis and while these are the J

vectors  that  come  out  on  the  surface  they  are  uniform  but  as  you  keep  going  inside  the

conducting material you will see that they are all coming but then the amplitude actually starts to

decay exponentially,  so the amplitude is  decaying exponentially.  So what is the total  current

enclosed.

(Refer Slide Time: 13:07)

Well, the total current that is enclosed over the loop ABCDA will be integral over 0 to W because

I have assumed that along the Y direction they have taken a distance of W along Z we have taken

all the way from 0 to ∞ right, and the way the current density would be varying with respect to z

dz dy  here the J vectors are all independent of Y therefore there is no problem of not simply

removing the integration with respect to Y so with respect to Y what would happen it would get

multiplied by W.

And here you have 0 to ∞ J(z) dz what then should be J(z) well we know that J(z) the way the

current density would change with respect to z is given by σ times E(z) and we know that electric



field is along the X direction but its amplitude is z dependent and this is going as σE0 which is

the amplitude at the surface and e1+j-1+jz/∆ right, where α=1/∆ β=1/∆ so here you have e-γZ and that

is essentially what I have written.

If you now put this one back into the expression and carry out the integration I will leave this as

an exercise you do not get ∞ okay, because the amplitude keeps on reducing although the loop

area seems to be ∞ and in fact it is ∞ the total current carried by that open loop ABCDA is finite

and you carry out this integration you will see that this will be given by σE0/1+J∆ so did we get

this one correctly yeah, so this is the total current that is enclosed by putting this J(z) back into

this one sorry, this is multiplied by W actually so you get WσE0∆/1+J.

Now I can instead of writing this w here I will do a small trick I will multiply W with ∆ or I put

W and ∆ together and I still have my σE0/1+J okay, now look at this term W into J okay, what is

the units of W well, W is the distance unit so it is measured in meters what is the units of ∆, ∆

again has to be measured in meters why because you have e-Z/∆ Z in meters therefore ∆ also has

to be in meters okay, so you have this also ∆ measure in terms of meters so what will happen

when you take the product of these two this will give you meter square and what is the units of

meter square or what is the quantity which has a units of meter square that is area correct, area

has meter square.

What is this area, this area has a width of W along the y axis and along the z axis it is not ∞ but

the z axis width is just about ∆ okay, and if you know or you already know that this σE0 is the

current density J0 which can now be considered to be uniform over this cross-section so over the

cross-section which is W wide and ∆ thick you can assume that the current density you know

passing through perpendicular is uniform and has a value of J0. But if you really want it you can

also consider this to be a complex J0/1+J but otherwise the point is that over this cross-sectional

region the J vector is uniform or you can think of this current coming off as a result of the

uniform current flowing only in this thickness.

Rather than the current that actually obtained by going all the way to ∞ coming back right, so

this was the original loop that we had considered but rather than finding this original loop where

the current is changing exponentially you can obtain the same value of the current if you assume

the entire current flows only in this small cross section of thickness ∆ and a width W. In fact one



also defines sometimes what is the current per width okay, please remember current per width

must be taken along the y-axis okay.

So current  per  width  is  given  by the  total  current  enclosed  by the  loop divided  by W and

obviously this can be obtained from the above equation or from this equation by simply dividing

this one by W. Let us not come analysis yet, let us go back to this example that we have talked

about okay, now notice that we had considered this cross-section right so we had considered this

cross-section now instead of considering that cross-section let me move a distance L along the

surface of this particular interface right.

So on the interface I move along a distance of L then I move a distance of W then go back by

moving a distance of L and then come back to the starting point okay, so I will move from here

to here then go along the direction of W then come back and then go back right, so I actually

form a loop right. Now on this loop now if I ask you on this loop if I just consider these two

planes okay, so this plane is that some say X=0 and this plane is our sum X=L okay, what is the

potential difference between these two planes.

The potential difference between these two planes must be given by the integration of the electric

field along the length L correct, so on this plane and this plane the potential difference between

these two planes is integral of electric field along the length L but luckily for us this electric field

is uniform on the surface has a value of E0 the length is L and E is along the x axis integration is

also along the x axis therefore e.dl which defines my EMF will simply be given byE0 into L. 
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Alright, now E0.L is the potential difference that I see on the surface if I now consider the ratio

of potential difference to the current enclosed okay, what do I get I know what is the current

enclosed this I know from the previous expression given by W∆σE0/1+J  so I need to go back

and put that expression into this i get 1+J/w∆σE0 okay, times E0 into L clearly E0 cancels on

both sides so I can remove E0 from the equation so E0 is cancelled on both sides so what I

obtained is 1+J/W∆σ or rather I will rearrange this one.

So let me say 1+J/σ∆L/W okay, and what is the ratio of voltage to the current potential difference

to  the  current  this  has  to  be the  impedance  and in  this  case the  impedance  turns  out  to  be

complex right, so in this case the impedance turns out to be complex but notice we are not done

yet so notice one thing suppose we consider L equal to W that  is we consider the potential

difference between two planes which are W apart and the current per width or the total current of

the same width W right, so if I consider that one and then take the ratio since L=W this quantity

will be equal to 1.

And what I obtain is a complex quantity 1+J/∆σ and this is called as the square resistance and the

square resistance is very important in VLSI or micro electronics areas where you can actually

calculate the resistance or the complex impedance of the materials nor the of the materials or the

interconnects by this idea so you divide whatever the overall region where you are computing the

impedance into small squares and of each of course they are all squares so on each square you



calculate  what  is  the  impedance  and  then  put  them  together  in  order  to  form  the  overall

impedance.

We are not yet done this impedance that we have defined is defined by the potential difference to

the current enclosed right, there is another impedance which also turns out to be complex in this

case this is called as the surface impedance okay, the surface impedance is defined as the field

amplitude to the total current enclosed okay, so it is not the potential difference but it is the field

quantity so E0/I enclosed and this will be equal to 1+J dividedby now because there is a E0 on

the top here W∆σ here this is times E0 is also present.

So this luckily again E0 cancels on both sides and the surface impedance that I obtained can be

thought of as having two components that is the real part and the imaginary part we will denote

the real part as R int which will be the resistive part and the reactive part by X in which of course

is a function of frequency right. So this will be equal to 1+J/W∆σ okay, so there again you can

rewrite this one this is 1/W∆σ+J/W∆σ okay, what is this W into ∆ this is area and then you have

1/σ times area right.

So 1/σ times area is resistance by end of along tube which has an area of a right the resistance of

such a tube as you know is given by L/σa or resistivity or resistance of that one is given by L/σa

so this component R int can be thought of as resistance per unit length. Similarly X int will be

equal to 1/w∆σ and X int is equal to ω times so X into let us write it over here so X int is equal to

1/w∆σ again W into ∆ is the area right, but X int can be written as ω into L in where L is the

inductance it is not actually an inductance that is there but it kind of an inductive reactance okay.

So  this  inductive  reactance  and  has  a  certain  inductance  associated  with  that  one  and  that

equivalent inductance and int will be given by 1 by, so L int will be given by 1/W∆ which is the

area σω okay, so this is the inductive converse of what I have trying to tell  you is that if I

consider a good conductor and have some way of inducing a current either it could be a plane

wave  that  has  been  applied  or  I  have  actually  taken  this  piece  of  conductor  and  applied  a

potential difference right.

I can apply a potential difference on the conductor between two planes now right, and those two

planes will not be at the same potential because this is not the time invariant or the static case

this is a case where there is time variance in the form of a sinusoidal variation so if I induce a



potential difference and cause a current to flow this current effectively flows only through this

small thickness, so you can imagine again to this one that if you take if you take this dusting part

thickness as ∆ right, the current does not really go all the way through the ∞ you can imagine

that most of the current or the effective current is lying only in this small patch of thickness ∆

okay.

So the phenomenon in which the current actually starts to flow very close to the surface just

below the surface and over a thickness of ∆ is called as skin effect and this is an important

artifact or an important effect in high frequency systems. We will not leave the skin effect at this

point we will go to an even more interesting way of the skin effect by calculating what is the skin

effect in a different structure which is again very important practically and that structure is a

simple round wire, okay. So we imagine that there is a round wire okay,

(Refer Slide Time: 25:54) 

So I have a wire of some radius a here okay, this is made out of a good conductor again so I

would not write it here but this is made out of a good conductor okay, and what I want to find is

what is the skin effect what is the surface impedance would it be the same as the previous case

would it be different from this case well before we can even answer these questions we have to

understand something that is it is not slightly important.

We have not really talked about the fields inside a wire we have not even talked about the fields

inside a wire when we are in oh we have talked about the fields in a wire only for the static case



and we have calculated the inductance of this single wire right, so which we computed to be

something like μ/8π you know in the coaxial case that we had computed there was an inductance

corresponding to the inner tube which was carrying the current I, and this current I was a static

current at that time the corresponding inductance contribution was μ/8π.

We have already seen this one however what happens when the current is varying with time and

the frequency is very high you can again imagine that most of the current will then be flowing in

the thickness of ∆ okay, so there will be essentially approximately no current here but because

most of the current and almost the entire current is kind of concentrated on the thickness of ∆

near the boundary of this wire okay.

But what is the value of that how do we calculate that these are not simple to calculate from the

plain wave analysis that we have done so we will do a slightly more rigorous analysis wherein

we will employ the quasi static analysis by employing amperes law and Faraday's law and we

will see how the fields inside a wire okay, or how the current distribution inside a wire can give

rise to skin effect. So we will consider these quasi static analysis of the wire in the next module,

thank you very much. 
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