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Hello  and welcome to  input  and move  called  applied  electromagnetic  for  engineers.  In  this

program we will continue the study of uniform playing waves. We have already seen that we

have scanned propagate along the z axis can propagate any arbitrary direction. We have seen that

the  ways  that  we  are  transacting  that  transfer  electromagnetic  waves,  but  we  have  always

assumed that they have either the x component or a y component.  And the corresponding hy and

the –hy component, but it does not have to be so. Because the real equation that we derived is a

very linear equation
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We can have electric field which has both x component as well as the y component. So we will

have a super position principle applicable over here because the equation is linear, and which

means that the electric field will have the x as well as the y component at the same time, okay.

But before we get to that we will recall what is the assumed dependent of the x on z. We can

write the dependence of x on ez by specifying the phaser notation, the phaser notation we have

ex is 0 to the power -βz and Ey of z will be some altitude Ey0 to β-jβz. 

Of course it  is  also possible  for  the Ex and Ey components  to exhibit  some kind of a  face

difference, so you can write this as E-jβz+ϕ, okay. Please remember the x and Hy are one group and

Ey and –Hx are another group for the t index that are propagating alongside the axis. So along

the z axis you can have everything which have both Ex and Ey components, so if this the wave

direction, this is the z axis the electric field can be in a direction that will have both x as well as

y.
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And the corresponding magnetic field will also have a component of Ey-hx, so E cross h must be

along the z axis, so appropriately we will have to find another new field such that this E cross h

would be perpendicular to e. 

So the point is because of the linearity of the grade equation simultaneously both Ex component

can exist as well as the Ey component can exist, okay. But as I said there can be a safe difference



between the two components. Depending on the safe difference there will be a different type of

behavior for the electric field of this vx.

So whenever we talk of a wave we normally specify its electric field, okay. Why do we do that?

Because the magnetic field can be obtained easily from the electric field, we have already seen in

the previous case how to obtain the magnetic field from the electric field so it is possible to

always obtain the magnetic field either by applying Maxwell’s equation or by the rule that we

developed in the previous module. 

Before we usually resort to only specifying the electric field, okay. And of course that electric

field will be in the form of a very, which we have assumed to be a sinusoidal one and we are

writing.
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The corresponding phaser  notation  for  those,  okay.  So those  components  all  have  the  same

frequency on either, so both Ex as well as Ey are of the same frequency omega and they also

have the same propagation constant data except that they are like some phase difference between

them, okay.

Suppose you consider the face difference =0 then what will happen, the total electric said moveϕ

which is a function of z and of course is  a phaser but I  am not writing the phaser till  now

everywhere, okay because it becomes a little cumbersome to keep carrying the tin, I am dropping

this but please remember all that we are talking about are phasers only, okay. 

At least up to some point where we will definitely introduce the time dependency. So yea that

phaser will be =  Exx x (z) which is another phaser + ŷ Ex(z) which is another phaser. Now when I

go to phaser to time, okay I can do that, so I will have the real electric field in terms of z and t

given by Exx x0 cos (wt-βz + ŷEy0 cos wt-βz. Why if that both components have cos wt-βz factor

because phase is assumed to be Z.

Now this is the electric field of the wave propagating along the Z axis. So propagation along Z

axis you can just write the corresponding magnetic field, but we are not interested in that this

point of time, because whatever we talk of electric field is same thing for the magnetic field as

well.  The  amplitudes  Ex0  and  Ey0  can  be  different  okay.  So  it  is  not  necessary  that  both

components have the same amplitude. Now let us imagine that we pick a convenient plane okay,

we pick a plane which will make this β(Z) term to be a constant. 
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So we pick that plane to be Z=0. So in the constant Z=0 plane okay, what will happen to that

total electric field E at Z=0 as the function of time will be equal to Exx x0  cos (ωt + ŷEy0 cos ωt

okay. Let me draw two lines, I call these line as this line as X and call this line as Y. Why is it

that I have written X down and Y here, because I am actually looking from the top. So this would

be the Z-axis okay.

And if you look from the top right,  you have an X-axis and a Y-axis okay, and the wave is

propagating along the Z-axis which means if I look from the top the wave is actually coming

towards me. And I have cut this plane at Z=0 that is just my reference, and I mean there is no

reason or lying Y Z=0 has to be caused, and you can take another plane Z=Z1 where the only

condition is that β(Z1) should be a constant okay.

So now that I have written my Z and Y axis on this plane and I have shown you that I am

actually looking towards the wave travelling towards me, let us see what happens to the direction

of the electric field at T=0 or at ωT=0. At ωT=0 what will be the direction of the electric field E,

it will hang Ex0 +  ŷEy0 so the resultant will be depending on the ratio of Ey0 to Ex0, but itxx

would definitely be along that direction.

So let us say this is the direction, let me make the different color to show you that. The projection

of this electric field E at ωT=0 on the X-axis will give you Ex0 the projection of this one on the

Y axis will give you Ey0 okay. The angle with which this vector lies initially at  ωT=0 with

respect to the X-axis is we denote this by θ okay, and this angle is given by tanθ=Ey0/Ex0 okay.



Of course, this tanθ will be equal to 1 and θ will be 45 when the amplitudes of both Ex and Ey

components are same, if they are not equal then there would not be the same angle.

Now tanθ is so and so right. What happens if ωT=Л/2? Cos Л/2=0 so which means electric field

at ωT=Л/2 will be at the origin, because then the amplitude is 0 what will happen at ωt =Π cos Π

is -1 and you will get – Ex0 – Ey0 y^ right so this was a condition that we have at ωt =Π/2 but at

ωt =Π the direction of the wave will be along – Ex and – Ey right which would be along this

particular direction, so this is when ωt =Π what will happen at 3Π/2 cos 3 Π/2 is 0 so which

means it would again be back at the origin.

So if you look at what is happening you can see that the wave is executing a motion such that it

initially starts off with this point goes through the origin goes through Π point and then comes

back so it initially goes in this way right and then comes back so essentially it is going along this

particular line happily it goes along this particular line from one point to the other points so it is

oscillating along a line okay, so that type of behavior is what we call as polarization of the wave

we say that the wave is polarized along the line and a line polarization is also called as linear

polarization.

We also specify that angle of this line that makes with respect to the x axis so this is a θ linearly

polarized wave okay where the angle the θ is given by E / 0 tan θ = E/0 Π Ex0 well it does not

have to be that the wave are polarized along a line waves can be polarized in many in a more

exotic state one of that is called as a circular polarization in the circular polarization case we

require that electric field and magmatic field have some amount of phasor difference okay so

when I consider   to be non zero I have to modify this equation.ϕ
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Right so the y component cannot be - β z but there as to be a phasor  component so let me justϕ

write this as +  okay does not matter I could have written as -    but let me just write it as + ϕ ϕ ϕ

now if I assume.
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Now if I assume that  non zero but  = ϕ ϕ Π/2 what will happen I have some cos (x + Π/2) what is

this equal to cos x cos Π/2 – sin x sin Π/2 x so clearly this fellow is gone so you will get – sin x

so this is what I have right so my electric field E at z = 0 plane will be = x ^ Ex0 cos ωt – y^ Ey0

sin ωt correct I will also assume that the amplitudes of these 2 are constants therefore this would

be just E0 and this would be just E0 again so the amplitudes of x and y components are same.

As before let me draw the lines over here call this as the x axis this I call as the y axis of course

as no I am looking at the wave as it is approaching okay what will be the initial direction of the

electric field at ωt = 0 at ωt = 0 the detection will be at along x axis at ωt = Π/2 because cosine

Π/2 is 0 the direction will  be along – y^ then when ωt = Π the direction will  be along – x

direction and at ωt = 3Π/2 the direction should be along should it be along + y direction because

sin(3Π/2) is therefore this will be along +Y direction.

So let us plot this directions at ωt = 0 and a long the x direction with an amplitude of E0 right

this is at ΩT = 0 then what will happen at ΩT = π/2 the direction is along – Y but – Y means

along this direction right, so the direction for the way wave will be at this point this would be at

ΩT = π/2 at ΩT = π we will have the wave propagating or the wave electric field directed along –

x which will happen along this right, so this is where I have the wave at so this is the wave so

this is the wave here this is the wave later on this is wave at ΩT = π finally at ΩT = 3π/ 2 we

have the wave along the y axis.

So if you look at this it is have though the waves and it is of course the wave starts at easy I

mean along the x axis and it  continuous and make a circular motion in this way it is making a

clockwise motion in this particular way okay, if I now imagine that if I curl my fingers along this

so this is the plane and if I curly my fingers in this direction I see that this thumb will be pointing

in the same direction as the wave propagation and remember I am actually looking from the

wave from the top and it seems.

As though that the electric field likes where executing the motion first at if I curly my left hand

direction I mean left hand then I see that as the wave is approaching towards me the electric filed

is making this left handed motion okay, so such a wave is called or is said to have a left circular

polarization okay so this is left circular polarization is when you look from the top to the wave

and it makes the left handed motion okay, you can take these as an exercise.
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Okay what would happen when  = - π/2 and then show that the corresponding direction inϕ

which the wave electric field vector the tip of the direct field vector would rotate is in the other

direction  is  in  the  direction  of  the  right  hand kind of  a  motion  so  you have  a  left  circular

polarization a right circular polarization we have the linear polarization all these polarizations are

how the electric field the tip of the electric filed would behave with respect to time in constant

plane okay one of the frequently you know ask question is that if I have a wave which know

whether this circular motion.

Is it possible for us to implement some kind of an optical or a some kind of a converter such that

I convert a circular polarization motion into a linear polarize motion or sometimes I have a linear

I want to convert into circular all these things are possible they all require the they understand

how the wave propagates in a un isotropic media which is the subject of what a future module

but yes polarization converters are one of the most common elements that you would find in the

EM wave community in the optic especially in the optics communities especially you would

find.

Lot of experiments involved and use of polarization converters okay further these polarization

vectors can be thought of a unit vectors themselves so you have a polarization vector if you have

a circular polarization you can define a unit vector along the circular and a unit vector along the

radial and in a right circular and combined them and the resultant will actually be a circular



polarized light so you have a circular polarized wave expressed as a linear combination of left

and right circular polarization just as we have in fact in the previous case.

We have shown in that left circular polarization is expressed as some of two linearly polarized

wave one linear polarization for the long x the other one was along 1 okay so these two are what

we call  as a basis  mutually  of orthogonal basis okay so one allow you to express the other

component in terms of that particular unit vectors so this completes our elementary discussion on

polarization we will revisit polarization in the context of polarization conversion when we talk of

propagation through an isotropic media, okay. We now move on to other topics.

Well,  so far we have considered a uniform loss less right, homogenous isotropic medium the

meaning  of  each  of  this  is  that  uniform  loss,  uniform  and  homogeneous  means  that  the

components μ and ε are independent they will have the same value at different points in space,

isotropic means that if the wave is propagating along x direction the value of μ and ε is the same

if it is propagating along the y direction also it is the same, if the wave is propagating along z

direction μ and ε are the same.

Lossless media means that we do not have the wave amplitude does not attenuate as a propagates

along the wave, so the if you look at the wave amplitude and z=0 and you look at the wave

amplitude at z= say 5000km away the amplitude would remain the same, okay instantaneously

they will be changing in the amplitude but if you wait for the time period then eventually it will

go to the same amplitude as just the other point, so there is no reduction in the amplitude, there is

no reduction in the power that is carried by the wave we will talk of power being carried by the

wave slightly later on, okay.

So we now want to consider what happens when the wave propagates in a lossy medium of

course I know what happens when the wave propagates in the lossy medium. Remember, this

component γ that we derived in the case of a transmission line well γ was given as α+jβ and we

have  defined  this  one  as  √(R+jωl)(G+jωc)  when  the  transmission  line  had  resistive  and

conductive components, right.

So we wrote this one as the real part in the imaginary power and then we said that α is the

attenuation  coefficient  pretty  much  the  same  thing  happens,  except  that  we  have  kind  of

identified l with μ and c with ε of the medium, what should be identified this R and G with it



turns out that we have to identify it with the constant σ which is the conductivity of the medium,

okay. If the conductivity of the medium is equal to 0 then the medium is a perfect dielectric

medium, okay. If the conductivity of the medium is equal to infinity then this is an extremely

good conductor or extremely prefect conductor or prefect conductor in some sense.

(Refer Slide Time: 18:40)

So if I consider a medium, so this is a medium that I am considering and the wave is propagating

along the z axis with its electric field oriented along say x axis or y axis whatever that is and

there will be a corresponding H field over there, if the medium in addition to be described by με

also has some amount of σ what will happen to the wave as it propagates well w go back to

Maxwell equation to see if the wave equation that we derived will remain the same and it turns

out that it would not be the same so you have ∇ x E = - j ωµ h no problem but ∇ x h we had so

far assumed to be equal to j ω ε x e.

And  neglected  the  current  density  component  but  it  cannot  neglect  that  current  density

component  anymore  because  of  finite  value  of  σ  the  current  density  component  which  is

proportional to e and therefore given by σ e the point from a formulas we discussed this is equal

to σ x e + j ω e.



So this term cannot be neglected and must be included oaky as before we take the curl of the

electric field once again and substitute the right hand side of curl h okay so I obtain – j ωµ x σ + j

ω ε x electric field e because the left hand side can be simplified to ∇2 e and the right hand side

as become – j ω µ σ + j ω ε x e okay – sine and – sine can cancel with each other this complex

number which is j ω µ x σ + j ω ε we call this as γ2 we can reduce this ∇2 e x some ∇2 ex /   ∇z 2

assuming that the way this propagating along the z axis and z axis alone and a component of the

electric field as only the ex component.

And the right hand side will be γ2 x ex where this γ is given by √ j ω µ x σ + j ω ε okay and of

course γ  will  be equal  to  α + j  β  you can  derive  the expressions  for  α  you can  derive the

expressions for β if you really do that one here but one case is actually very interesting this case

leads to what is called as the skin effect in the conductor and it is applicable when γ can be

simplified.

(Refer Slide Time: 21:09) 

By taking an approximation which I will just show you remember recall γ is j ω µ σ + j ω ε right

all under square root if I assume that σ is much larger than ω ε oaky if I assume that σ is much

larger than ω ε which is equivalent of assuming that σ x e is much larger than ω ε x e okay in

magnitude of course I am talking about so in magnitude of σ e is larger than magnitude of ω ε e

and  ω  is  time  variation  right  time  variation  converted  in  the  phasor  form in  terms  of  the



frequency variation so this component is essentially the displacement current and this component

is the conduction current. 

So if the conduction current dominates the displacement current as in would happen when the

medium is made out of a copper for example right, so you have a nice thick copper plate over

which we are trying to or within through the medium that is trying to propagate in that case

because of the conductive of the cooper being very high and for the typical operations of the

frequency the value of the σ will be much larger then ω epsilon.

This  indicates  the  conduction  current  of  the  current  density  in  that  medium will  be  mainly

conduction current and extremely negligible displacement current. So for that case we call this as

a good conductor, so we call the material and the medium as the good conductor, when σ is much

larger than the ω epsilon. What will happen to γ then? γ will be approximately j ω μ σ under √

okay. 

Now this can be written as √ ω μ σ Times √ j. what is √ j? One simple trick to find this one is to

write this as ejπ/2 and then take a √. Luckily taking the √ means you multiply this one by 1/2 , so

this becomes ejπ/4 is nothing but 1 + j/ √ 2. So γ will then be = ω μ σ / 2 under root 1+ j. indicating

that this as α = ω μ σ/ 2 under root and beta also = √ of ω μ σ/ 2 okay. So both α and beta are =

and they are = to ω μ / 2 okay.
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What will happen to the electric field then? Well we know that Ex(z) you are considering the

pharos of the electric field that we were considering let say it as some constant E0 and it must be

e-γ x z this is the general solution that we are considering okay and we will consider that z > 0 is

where the medium is present. Therefore we are putting the – to this one, so that we eventually

want the wave to attain and not to amplify.

Substituting for the γ as α + j ß and knowing that this α is given by ω μ σ / 2 under root 1+ j for

γ, I can write this as e0 e-αz e-jβz but e0 or this particular α is given by the √ of ω μ σ / 2 and 1/ α if

we define as Δ and Δ is given by 2/ ω μ σ under root and Δ can simplify further by writing ω as 2

π x f this is given by 1/ π f μ σ under root okay. so if I define 1 / α as Δ then I can rewrite this one

as, this expression for electric field as e0 e-j/Δ okay and Δ is what we called as the skin depth okay.

It is measured in meters you can go back and show that this is actually measured in liters 4 δ so if

z is such that the distance between travel stance of four δ then the amplitude would be e-4 and e-4

is such a small number that this is approximately zero so we say that as the wave begins sort

some z=o let us say that the wave enters into the medium a good conductor.

And as it begins to propagate in terms of z about 4δ the way of electric filed would have dropped

down almost to zero okay so it is δ which is the skin depth constitutes are you know is a very

important parameter to describe a whether the medium is good conductor and if it is a good

conductor  how  within  to  what  distance  inside  the  good  conductor  the  wave  can  actually

propagate because if δ is very large right when δ is large then you need to propagate further 



Such that the wave actually drops to in amplitude but if δ is very small then mean that for very

short distance right after the conductor the waves actually drops out most importantly this skin

depth is not independent of frequency that is the very important factor to remember skin depth is

inversely proportional to f  so the same medium which might be you know having a very large

value  of  δ  for  small  value  of  frequency  the  corresponding  value  of  δ  will  actually  start  to

decrease as the frequency increases okay.

So if you had initially considered a conductor or a wire a solid conductor let us say the current

through this conductor would be uniform at f=0 because at f=0 the current or the current density

which is proportional to the electric field will be you know having a skin depth of infinity right.

So  which  means  that  there  is  no  attention  as  a  way  go  through  this  conductor  but  very

frequencies what you will see is that the current is kind of confined only along the edges within

this particular material okay the higher frequencies the current is just confirmed to this thin strip

okay.

And that width of this strip is given by the skin depth δ and this width keeps decreasing and

decreasing when the frequency goes off to optical frequencies then this be equal to very small

number provided you keep the same value of µ and sigma we will have more to say about skin

depth we will in fact have a cause analysis of skin depth in the next module until then thank you

very much.
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