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Hello and welcome to the NPTEL mooke on applied electromagnetics  for engineers.  In this

module  we  will  look  at  terminated  transmission  lines  introducing  you  to  the  concepts  of

reflection and transmission coefficients. Now before doing that let us actually set up the problem

that  we  are  about  to  investigate.  So  far  in  the  previous  modules  we  considered  that  the

transmission lines actually had no end there was no load on the transmission line right, there was

no source, there was no load that we considered.

So magically  voltages  were appearing on the transmission line both going along positive or

negative Z-axis. Now suppose I consider a semi infinite line that is I consider that the source is

located far, far away from the transmission line,  but I have a load situated here, here in my

language means Z=0 okay. So this is a coordinate system that is typically used when dealing with

transmission lines that loads are located at Z=0 and sources are located at some Z=minus some

value okay.

So far for us Z=-α of the source initially, but we will relax that assumption later on okay. So what

we  are  actually  looking  at  is  what  happens  to  these  waves  okay  when  you  terminate  the

transmission line with a load okay. Let us look at that one.
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Look at the way I have drawn the transmission line the transmission line is indicated by these

two lines which I have drawn okay I have also drawn two small sinusoidal kind of a thing to

indicate that we are considering a frequency domain behavior and I have a way which is going in

the positive Z-axis as well as in the negative Z-axis I also locate this node at Z=0 so this is the

load that we have kept it could be a T, antenna or it could be a television set it could be anything

that you are considering as a load in a high-speed digital system this could be a no address bus

on one hand and the module that the address bus is actually addressing to.

So it could be any kind of a thing and this load could also be frequency dependent meaning that

there could be some inductance or capacitance in this particular load, so that the impedance is

what you would want to consider not just a load resistance. So you actually are considering a

slightly  complicated  case  of  load  impedance  okay.  The  load  impedance  of  course  is  the

termination condition which tells you that there will be some current flowing through the load

which we can label as IL and there will be certain voltage across this load which we can label as

VL okay.

Now on the transmission line at any Z that I can take off at any point on the transmission line

there will be both positive and negative going voltages right. So the total voltage here in terms of

the phaser that I would have is given by V0
+e-jβz+V0

-ejβz so the V0
+ wave or the positive is a

travelling wave will be going along the plus Z direction and this V0
-ejβz will be going along minus

Z direction okay, that would be the same case if I draw the plane here at this plane also it would



be the  same situation,  this  plane  is  all  for  the  same situation  it  would exactly  be the same

situation at Z=0.

But what will happen to this V at Z=0 this would be equal to V0
++ V0

-  that is the total voltage

right that would be equal to V0
++ V0

- simply because Z=0 here, but at this voltage I do know that

the total voltage is actually the load voltage VL by the way I have used a very you know kind of a

irregular shape of wires to connect this ZL load right. The reason that I have done is to show that

anything beyond this region where the load is connected the spatial extent of this load can be

neglected.

In other words this region what we are considering is the lump region this is the transmission line

region okay if this length of this region that I have considered or the shape of this region that I

have considered has no bearing whatsoever for the relationship between voltages and currents.

So to comeback at the load the lower voltage is VL,  and the load current is IL, and the load

voltage here appears from the left if you approach the load will be given by V 0
++ V0

-  which

would then be equal to VL okay.

It is fairly simple, because the voltages if they are different then there has to be some other

element which is actually taking up that extra voltage and unfortunately that cannot happen here

you can also confirm this one by applying a simple KVL around the loop near the node if you

apply KVL you will see that from the left the voltage will be V0
++ V0

-  and on the right hand side

it would be VL and those 2 voltages of the same.

Similarly the currents must also be the same in one of the exercises you must have derived what

is the current phaser, and the current phaser is given by I0
+e-jβz+I0

-ejβz you must also have derived

I0
+  and I0

-  to be V0
+/z0 and –V0

-/z0 with these phase factors going to one here because we are

considering at Z=0 so the current phaser at Z=0 which will give you the total current on the

transmission line as the current approaches the load will be given by V0
+/z0 –V0

-/z0 which will be

equal to the load current IL okay.

The load current can also be written as VL/ZL because IL must be equal to VL/ZL. Now you have

two equations okay one equation telling you that V0
++ V0

-  = VL and you have another equation

which tells you that V0
+/z0 x V0

-/z0 must be equal to VL/ZL.
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From these two you can actually reduce one of the constants you can show that or you can write

this one as V0
++ V0

-  = VL, V0
++ V0

-  = Z0/ZL x VL, I take V0
+ as a common factor out and what I get

here is 1+ V0
- / V0

+ = VL. In the next equation if I take this fellow common I get 1- V0
- / V0

+ this

would be equal to Z0/ZL x VL okay. I can now divide this equation by this equation and all before

doing that let me denote the ratio of the amplitudes V0 - to V0 + remember V0 -  is the wave

which is getting reflected or wave which is actually travelling along the – Z direction V0 + is the

wave which is travelling along the + Z direction the ratio of this voltage is V0 - and V0 + which

represents the incident and the reflected voltages incident.

Voltage  is  V0 +  the  reflected  voltage  which  originated  from the  load  and travels  along  the

transmission line in the direction opposite to the incident voltage is called as the reflection mode

reflected voltage whenever the load VL will not be equal to the characteristic impedance of the

transmission line  Z0 there will  always be voltage reflection  okay otherwise your  KVL KCL

would not be satisfied at the load okay so the reflected voltages are created necessarily as the

mismatch between the load and the characteristic impedance.

As we will also see later on ok so this equation can be simplified to write V0 + 1 + γL is equal to

VL okay where γL is the load reflection coefficient so this amount of reflected amplitude to the

incident  amplitude  if  called  as  the  load  reflection  coefficient  okay  and  this  load  reflection

coefficient at the load point on a reflection coefficient at the load is denoted by γL and that is

what I have used in this expression okay in this expression I have used that one I can simplify the



second equation by getting this as V0 + 1 1 - γL this would be equal to Z0 / Z L into VL now I

divide these two equations okay.

When I divide these two equations from the V0 + will go away VL will also go away from the

equations and what you get is 1 + γL by 1 - γL is equal to ZL / Z0 all right so when I divide the

second equation from the first equation right I can rearrange this equation to solve for γL I will

leave this as a simple exercise to you so let me also mention that this is an exercise that you can

easily do ok invert the relationship to show that the load reflection coefficient γL is given by ZL -

Z0 by ZL + Z0 okay please remember reflection coefficient tells you the ratio of the reflected

wave to the incident wave if γL is equal to 0 the voltage that is getting reflected.

Will have an amplitude of 0which means that there is no reflection so γL equal to 0 indicates no

reflection what is the nature of this γL well this just said that ZL maybe complex correct.
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Because there could be some inductance and capacitance in the load if ZL is purely a resistor then

the reflection coefficient will always be real assuming that 0 is real we will assume that Z0 is

always real so in that case the reflection coefficient will be purely real otherwise it will in general



be complex any complex number can be represented by its magnitude as well as its angle okay

which we can write in terms of the magnitude and the phase angle we can write γL which may be

complex because Z0 ZL is complex can be written in terms of its magnitude and a certain phase

angle ψL.

Okay now once I know that this is the load deflection coefficient I can write down my total B of

Z as V0 +E - jβz which is really the wave which is or gating along the plus Z direction + V0 – ejβz

but I saw you pass +jβz but V0 -  can be written as  γL into V0 + correct because the ratio of

reflected to incident is this reflection coefficient voltage and this wave is propagating along - Z

direction I can simplify and write this as V0 +  ejβz  which I can remove outside no take as a

common factor then I get 1 + γL ejβz  β into Z further.

 I can denote this γ L into ejβz  as γL offset which will tell me how the reflection coefficient is very

linked at different points on the transmission line so this is at the load point where Z is equal to 0

and at different points the value of γL will be changing to this γL if you add by 1 and multiply by

V0 + e – jβz   we  you will get the voltage phase or the total voltage on the transmission line now

how do I obtain the voltages function of  Z and T from the phaser okay in order to do that one

you simply multiply the phaser by ejωt  factor remember this is the factor that you have dropped

earlier to go from Z and T notation to the phase of notation.

Now you insert this ejωt  and then take the real part of it okay so this is how you go from one

domain to the other domain okay.
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Now let us look at several different cases for  γn let us consider the case where ZL is equal to

infinity when will I have ZL equal to infinity when current is equal to 0 the load current is equal

to 0 and the load voltage is some number greater than 0 right that is to say that I have no current

flowing through that load terminals and the voltage is some value right this is clearly the case of

an  open  circuit  termination  so  an  open  circuit  termination  is  simply  the  case  where  the

transmission line ends are just left as it is.

What should be the total voltage at any point Z along the transmission line well first find out

what is the load reflection coefficient what is the incident voltage incident voltage is V0 + C – jβz

at Z equal to 0 the incident voltage will have an amplitude of V0 +  but clearly this is the case

where no current is flowing right so what should happen to the voltage that is incident entire

voltages to reflect back you can see that by going to the reflection coefficient expression the load

reflection coefficient expression γL is given by ZL - Z0 by ZL + Z0 this clearly gives you +1 okay

γL of + 1 means full reflection.

and γL also turns out to be a real number here and remember what is γL this is nothing but v0-/vo+

which  implies  that  the  reflected  voltage  amplitude  is  exactly  equal  to  the  incident  voltage

amplitude, okay. Once that happens you can write down the total voltage phase at any point on

the transmission line as v0
+e-jβz I can take v0

+ as a common factor out and then write this as e+jβz.

I know that this is e-jx+ejx kind of a expression so this will give me 2v0+cosβz okay. Now let us

actually try and plot this 2v0+cosβz the magnitude of this one let us plot the magnitude of this



voltage phase okay, so this is the point where that is equal to 0, z of course is increasing along

this  right-hand  side,  okay.  How would  this  2v0+cosβz  magnitude  look  initially  it  would  be

maximum here with a value of 2v0+ and then it would go down to 0 at –π/2β why would it go to

–π/2β because cosβ  into some value of z must be equal to π/2 for this fellow to go to 0.

And remember that z is negative as you go along the transmission line therefore this would be 0

at –π/2β thereafter again it would be maximum it would be minimum acute maximum and it

could go on like this what would happen to the current well you know that current has to start at

0 here because there is no current flowing in the open circuit region but then the current will

reach its maximum at the same time where the voltage is reaching its minimum and then it would

be out of phase with respect to the voltage by about 90˚.

So this  is  the current  waveform and this  is  the  voltage  waveform that  you would see  on a

terminated transmission line when the termination happens to be a open circuit, okay. Now this is

the voltage phase what would be the voltage actual voltage as a function of z and t well let us

look at that one all I need to do is to take this phasor and multiply this phasor by ejωt and then

take the real part of it right in order to obtain the voltage as a function of z and t and when I do

that what do I get.
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I get 2v0+cosβz right times cosωt okay, if you now go back to the transmission line and πck a

point where cosβz=0 right that is you know the case where we had considered at –π/2β if you



pick z=-π/2β point you would see that no matter what time is changing the voltage at this point

will always be at 0 right. Similarly the voltage will always be at 0 at after a π value here when

this will be at -3π/2β so these locations where the voltage is 0 is not changing they are always

present no matter what time is changing okay.

We will contrast this case with a traveling wave in a very short way this wave in particular wave

in this wave in a situation where this maxima or the minima is not changing with respect to time

and hence kind of nothing is moving is called as a standing wave okay this is called as a standing

wave, alright. Let us consider the second case I consider ZL=0 which happens to be the short-

circuit condition in the short-circuit case I know that the voltage would actually drop down to

0and the current would actually be maximum there okay.

But what would be my load reflection coefficient here γL will be equal to -1 right, because γL

happens to be -1 in this case the total voltage phasor we have said that I get will be of the form

v0+e-jβz-ejβZ or simplifying by utilizing the relationship of trigonometric and complex exponential

this would be -2jv0+sinβZ and again if I plot the magnitude of this I see that the voltage would

have dropped to four this is a short circuit right so I have to indicate that this is a short circuit I

have indicated that here and when I look at what would happen to the magnitude of the voltage

here it would be 0 and then it would reach to its maximum at a later time and then again go down

to 0.

There would I get a maximum I would get a maximum at -π /2β this number – π/2β is coming up

again this is the location of the first maximum when I terminate the transmission line with a short

circuit  previously  this  was  the  location  of  the  first  minima  when  I  had  terminated  the

transmission line with the open circuit I will leave this as an exercise for you to find out what is

the voltage v(z,t) okay from the phasor you should be able to find out what is v(z,t) and also

locate and find out whether you get our standing wave or you will get a traveling wave as a result

of this what are the travelling goes.
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Let me go back to the situation where I consider ZL=Z0 okay, this  is a very special  case of

termination where the load is terminated in the characteristic impedance of the transmission line

when I do that what will happen to γL well γL is ZL-Z0 since ZL=Z0 β will be equal to 0 since γL=0

this  is  the  third  case  where  consistent  so  γL=0 simply  implies  v0
-  =0 which  means  there  is

absolutely no reflected wave and the voltage phasor is given by v0
+e-jβZ.

If I plot the magnitude what would happen this is something that is interesting so now again I am

going to terminate this one by Z0 right as I terminated here and if you look at what is happening

to the magnitude the magnitude will be a constant v0
+ that is kind of surprising that is surprising

only because you go back to what is v(z,t).

For this case voltage and function of both certain t will be given by v0
+ e-jβZ.ejωt and then take the

real part of it what you get is v0
+ cosωt- βZ where is the minima located here or the maxima

located here the maxima or minima that is located actually varies with respect to time correct this

is a clear case where if I consider that at sometime t=0 the minimize located here at the next time

instant the minima would have shifted either to the right or to the left it does not matter where it

is but the point is it has shifted.

So this minima or the maxima will be moving along the transmission line and therefore they do

not represent the stationary points along the transmission line they are actually moving along the

transmission line and hence this is the case of a travelling wave, okay. Now before I consider

other cases let me consider another situation okay.
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Wherein just describing everything in terms of the reflection coefficient will not be helpful I

need to consider what is called as the transmission coefficient, okay. The transmission coefficient

is best to consider what is called as the transmission coefficient okay the transmission coefficient

is best obtained by considering this following scenario, so I have one transmission line over here

I have some z0 1 as the characteristic you of this  transmission line on this line I have both

positive going voltage as well as negative going voltage I terminate this transmission line with

the load ZL okay through which some current I L can be flowing okay.

And then to  the  right  of  the  load  I  consider  a  second transmission  line  I  connect  a  second

transmission  line  of  characteristic  impedance  z0 to  so there  is  now a voltage  what  happens

physically is that a voltage would arrive from the source hit the load and if ZL is different from

zero one there will be reflection okay. So there will be a reflected voltage however there will be

some voltage drop across the load and the remaining voltage would actually be propagated along

the second transmission line okay.



You can also think of a current doing in the same way so I  have a current  incident  current

reflected  some  current  passing  through  the  load  and  the  remaining  current  that  is  being

transmitted so I have incident the I reflected voltage V R and transmitted voltage VT please

remember we I will  be plus V R will  be minus VT will  again be plus all  this  happening is

happening at the load where I have kept the load at Z =0 and my z axis is increasing in this way.

Now I am interested in not only knowing how much the voltage is getting reflected but also how

much the voltage is actually transmitted in order to do that I have to write couple of equations

those  are  kind  of  very  easy  to  write  them  from  the  left  if  I  approach  if  I  approach  the

transmission line Z equal to zero from the left then the total voltage will be VI + Z =0 + Vr- z= 0

correct this is the incident plus the reflected voltage on the transmission line at Z = 0, this should

be equal to VL but I know from KVL that whatever the voltage that will be there at VL must also

be the voltage of the transmitted voltage right on the second line that on the transmitted voltage

in the second line at Z =0 okay from this KVL this is very clear. 

So at bt because if you approach this load from the right hand side that voltage will be beauty

plus X Z = 0 and that would be equal to the voltage on the load clearly there is no reflection here

because there are node that we have kept you skip that infinity and it  would take almost an

infinite time to come back okay. What about the current waveforms well there will be current the

current will be the total current corresponding to the incident which would be VI + Z = 0 / Z 0 1 -

V R - / Z 01 at Z = 0 this is the incident current on this side there will be some current through

the load and the remaining current will be transmitted right.

So this must be equal to the current through the load which is il +VT + Z = 0 / Z 02 okay clearly

this  is  the current  which is  incident  this  is  the current  which is  reflected  this  is  the current

through the load and this is the current that is transmitted okay. Now you can simplify these two

equations I will not simplify them because this is mostly algebra and we do not really gain much

of a physical intuition of there but if you simplify these 2 equations.

And then find out what is the ratio of V R - that is the reflected voltage at z equal to 0 – the ratio

of the I +  z = 0 this would be the reflection coefficient for the first transmission line or since

there are only two transmission line it is kind of understood that this is reflection coefficient at

the first transmission length therefore I will remove this subscript 1 I call this as γ L and this γ L



is now given by Z L parallel - Z 0 1 by Z L parallel plus Z 0 1 in case you are wondering what is

that L parallel you would actually see that once if you solve the two equations previously that I

mentioned this is given by Z of the load ZL and the second transmission line Z 0- ZL + 0 - this is

actually ZL parallel with Z 0 – okay.

Z 0 - is the characteristic impedance of the second transmission line and z0 1 of course the

transmission line first  transmission line characteristic  impedance this  is  the overall  reflection

coefficient now, what is interesting to observe here is that the reflection coefficient does not only

depend on the load ZL but also depends on the second transmission line characteristic impedance

that we connect okay. If I am interested on what is the amount of the voltage that is actually

transmitted onto the second transmission line I have to find out what is VT + at Z = 0 - what is

the incident voltage that I have sent and this ratio of the transmitted voltage at the load to the

incident voltage at the load is called as a transmission coefficient this is denoted by there is not a

standard number or a symbol to denote this one I picked out okay. 

Some people pick different  symbol to denote this  one so in my language tau represents the

transmission coefficient and this value is given by 2 Z L parallel divided by ZL parallel plus Z 0

1 okay, you can show this again by some algebra that you would obtain by solving the previous

equation so this is the transmission coefficient okay and we will later see what would happen to

this  transmission coefficient  why would it  be important  when we consider the power that  is

carried away by these voltages to briefly tell you what it means there will be some incident

power carried okay.

There would be some reflected power that is carried by the reflected voltage this is the incident

power there will be some power that is dissipated in the load and there would be some power that

would  actually  be  carried  away  by  the  second transmission  line  in  case  I  have  the  second

transmission and if not then this would be that took 3 powers and the total power would actually

be constant. So we will stop here and continue the solution of the transmission line in the next

module thank you very much.
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