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Hello and welcome to NPTEL MOOK on applied electromagnetic for engineers we will continue

the discussion of calculating magnitude static fields for a few more cases because this is quite

important the next example that we are going to consider is the field of a coaxial cable.

(Refer Slide Time: 00:32)

Now a coaxial cable is a very important transmission line as we have seen earlier and this has a

structure that looks like this so there is a central conductor of some radius a and surrounded by

this central  conductor the central  conductor actually carries a current of I whereas the return

current is carried by the outer conductor and the outer conductor has a certain thickness of C-B



because I am assuming that the outer conductor is again given by two conducting circles one

having radius B and the other having radius of C.

So the thickness of the outer conductor is C - B we will assume that this current is uniformly

distributed in the entire cross section so what we mean by that is that the current density J will be

equal to I which is the current being carried divided by πa2 for the inner conductor because this is

the inner conductor having a radius of a and therefore an area of πa2 the current density is always

given by the current divided by the area.

So this is I/πa2 okay now my goal is to determine the magnetic field for all values of our first I

will consider the case where this value of R okay will be within the inner conductor that is I am

going to consider this particular loop or this one in the longitudinal cross section which is at a

radial distance of small r okay now notice that because this R is within inner conductor the limit

of R is that this R can be 0 to a that is it can go from 0 to a what is the amount of current being

carried by this particular cross section.

So if you now look at just the inner conductor this radius is a but then I am considering this

particular cross section which is given by this one so this is just the inner conductor I know that

from the entire the area or the entire inner conductor cross section the current density will be

I/πa2 and the current that comes out will be I/πa2 so you can again go back to this example this is

the inner conductor the current coming out uniform and has a current density of I/πa2 whereas I

am interested only in the current through this particular radius R or the cross-section of radius R

how much current do I actually get.

Well you can easily see that if this is the current density then the current that is coming out of

this you know cross section let us say S1 okay I threw S1 will be equal to current density times

whatever the area of the cross section S1 and that cross section area is πr2 right therefore this

would be given by Ir2/a2 as the total current that is coming out from the cross section s1 where R

can go from 0 to e okay.

Now this is the right-hand side for our amperes law what about the left hand side of the ampere

law well we have in the previous module seen that if I have a wire you know carrying a cross

section or if this is a conductor then the magnetic field will be circulating this particular wire

right  so  the  magnetic  field  will  be  along  the Ø direction  only  thing  that  you now have to



understand is that you are considering within the inner conductor the radial distance R but on that

radial distance R the value of H will be constant H will of course be along the Ø direction.

But  the corresponding line integration  will  be equal  to  2πr  this  will  be equal  to  the current

coming out from the cross section s1 so this would be Ir2/a2 clearly are on this side cancels out

with R on the other side and HØ is given by I/2πa2*r okay and for future reference we will also

write BØ, BØ is given by μ0Ir/ 2πa2 and if I sketch this BØ how does BØ look as a function of R

well at R equal to 0magnetic field will be 0.

Because there is no cross-section out there so there is no scope of having some current coming

out so this is 0 but at R equal to a it reaches a maximum value of μ 0Ir/ 2πa so it increases linearly

and reaches a value of μ0Ir/  2πa at  R equal to a beyond that what happens we will  have to

calculate that now when I consider the radius R to be outside the inner conductor but within the

outer conductor so this is my new value of R now I know that the total current enclosed by this

cross section which we will call as cross section s2 will be equal to I itself correct because the

entire inner conductor is now contributing to the current.
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So when R is between A to B the total current enclosed of the cross section s2 will be equal to

the current of the inner conductor I okay the left-hand side doesn't really change so you still have

HØ 2πr that must be equal to I and HØ is given by I/2πr okay now you see that the magnetic

field is actually inversely falling off with respect to R for future reference again BØ will be equal

to μ0I/2πr so at R=a you will have Bπ(μ0) I/2πa therefore there is a nice continuity out there.

So this was μ0 I/2πa and from there onwards it actually starts to fall off, when you go to B right,

it falls off inversely I have not drawn it very nicely but when you go to B the value will be μ0

I/2πB  okay, that  is the value for Dπ. Now we are we have only one more cross-section to

consider okay, and that cross-section happens to be within B but less than C, so this is the cross-

section that I am going to consider or this is the radial distance that I am going to consider.

The corresponding cross section we will call this as s3, so this inner radius is A this is B and this

outside conductor radius is C okay, now what is the current density. Now this one actually has

two components one there is a current contribution from the inner conductor because now that

you are on the outside there is a contribution of the current I and the total current enclosed will

be equal to I.
However the current enclosed over this cross-section will have you know in addition to the inner

current there will also be a contribution from the current being carried by the outer conductor, so

part of the outer conductor current will also be present here okay, and what is that part of the

outer current well first we calculate what is the outer conduction current density is J=-I/ - IπC2-B2



why is there a –π, I mean - sign to the current well because this is the return current that we are

considering.

So on the  inner  conductor  the  current  is  I  whereas  on the outer  conductor  the current  is  -I

therefore this is the current density that you are going to get, but what is the cross sectional area

of this hatched thing that we have talked about right, so in this hatched cross section that is the

cross sectional area is given by πr2-b2 therefore the total current enclosed from the cross section

s3 will be the inner current or the current contributed by the inner conductor minus whatever the

current that is contributed actually plus but in this case I is minus therefore you get Ir2-b2/c2-b2

okay.

This is the current of course this current must be equal to then 2πr where again r is the radial

distance of corresponding to the cross section s 3 that we are considering times HΦ so HΦ will

be equal to I/2πr which is the contribution from the inner conductor -Ir2-b2 so I/c2-b 2well there is

also 2π  over there and then you have divided by r okay, it is a little complicated expression but if

you now look at what happens to HΦ at c that is at r=c you will see that this would be c2-b2 that

would cancel out here which would again cancel out with I/2πr and you will actually get this

value equal to 0.
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So HΦ will change in some manner which I not plotting but when you go to c the magnetic field

will be equal to 0, because if you go to any region outside right so if you go to any region outside

clearly the total current contributed will be equal to the plus current I by the inner conductor and

the return current of the outer conductor which is -I therefore there is no current enclosed if you

go to a cross-section s4 which is at a radial distance r greater than c, so for r greater than c no

field. 

In fact this is one of the reasons why there is much a nice thing about coaxial cable because all

the fields are confined only within the structure itself there are no fields on the outside this is all

true as long as you have a perfect coaxial conductor, but unfortunately in real world you do not

have a perfect coaxial conductor therefore there will be some amount of magnetic field present

outside some amount of electric field will also be present outside, in order to protect you know

the cable from all these external ones you actually jacket this coaxial cable.

So a coaxial  cable will have an inner conductor outer conductor and a jacket the medium in

between will  be filled  by some dielectric  or  an insulating medium okay,  this  completes  our

calculation of magneto static fields using amperes law or biot-savart law, the previous problem

can also be solved by biot-savart so it is a little more difficult compared to the amperes law so I

would not suggest you do that one wherever possible take advantage of symmetry,  wherever

possible take advantage of amperes law. But even these amperes law and you know the biot-



savart law kind of are very difficult to handle when the situation goes slightly difficult what do I

mean by difficult scenario here is an example.

(Refer Slide Time: 10:46)

Suppose I consider you know current but not in the form of a wire, but in the form of a loop

okay, and I put this current carrying loop in z=0 plane that is I actually consider the current in the

z=0 plane of course this is the y-axis this is the x-axis you have to pardon the way I have drawn

this one. Let us say the radius of this wire is a and I want the field to be calculated at this point P

which will be 0,y,z why am I taking this a 0,y and z with a little bit of convincing yourself you

can see that because of symmetry it is just sufficient for us to calculate the field at any constant

value of x and what better value of constant of X then X equal to 0 to simplify our calculations a

little bit.

So I want the field P here now amperes law is very difficult to apply in this case biot-savart law

is even more difficult to apply in this case therefore we need some other means of calculating the

magnetic field and it is here that we introduce another quantity called as a vector potential a,

what is the vector potential we know ∇xH is given by J vector okay, but ∇.B is always equal to

0.

Now when ∇.B is 0 I can write this B as a curl of some other vector okay, and this some other

vector a is called as the vector potential a or he magnetic vector potential a. Why is this true,

because ∇.∇xa will always be equal to 0, therefore if I write the B field in terms of another field



called a okay which is called as the vector potential then first I calculate the potential a which

will  be reasonably simple to calculate  reasonably I am not saying that it  will  always be but

reasonably simple from there we go back and infer what is the value of B, okay.

How do I relate all these things so of course since B is μH, H will be ∇xa/μ but you do not really

need to worry about that, now consider what happens to ∇ x∇ x a right, that is I know what is

∇xa which is B and I take the curl of this B itself so I get  ∇ x  ∇x a and one of the vector

identities is that this is ∇ of ∇. a -∇2a and we are complete liberty to specify what is this ∇.a, we

specify the simplest case of ∇.a=0 this incidentally is called as the Coulomb Gauge okay, Gauge

being simple meter kind of a thing and  ∇ x a is nothing but B, B is nothing but μ into H in

general μ is constant we are considering in this particular case.

So what I have is ∇ x H I know which is J and this right hand side is -∇2a therefore ∇2a vector is

equal to –μJ. If you look at this equation, this equation should remind you of poisons equations

so you had ∇2V=- ρ/ε only thing is that this V was a scalar in that particular case here this vector

a is a vector of course okay. However, for each component of a you can simplify the equation to

make it look like the poisons equation type and we know the solutions of this poison equation

right, so V at any point R is given by integral of ρdv' which was the volume distribution divided

by 4πε  R- R' right, magnitude.
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In a similar way you can write A at any point r as the integral over the volume distribution of the

current so instead of 1/ε  you will now have μ so μJ at the field point and the source point R'

integrated over the volume integral divided by 4πr, where r is the magnitude of r-r' vector ,why is

this vector potential and you know a easier method than biot-savart law well one important thing

is that if J is varying in a particular direction the magnetic vector potential will also vary in the

same direction or it will have the same direction as J vector whereas the B field will have a

direction that should be perpendicular to this J as well as the point which connects from the

source to the point where you are evaluating the field.

So the cross product is kind of eliminated now that that is eliminated of course in the form of the

vector potential calculation then the cross that makes its reentry when you calculate B in terms of

∇ x a. However, if I know a which is reasonably simple to calculate than B okay, reasonably not

extremely easy so if I calculate a you know which will have the same direction of J then follow it

up by calculating the curl then this is an easier procedure okay, and we can also show that the

calculation of vector potential in many cases especially in antennas is more straightforward okay,

than calculating the B field. So whatever that we are developing will actually be very, very useful

when we discuss antennas. 
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So let us go back to that loop that we were considering at this point I am going to calculate the

vector potential correct, so let us say first I need to write down the position vector of this one of

the point which we will call as O of the point P which is the line OP so let us label this position

vector as R I know that this is in the spherical coordinates along the radial direction and we will

now assume that  there is  a  current  distribution  which I  am looking at  so this  is  the current

distribution that I am looking at which will be along the Φ  direction right.

So it would be IdΦ' where Φ is the angle that this is making so this is the angle Φ so from the x

axis whatever the angle that this line OQ makes Q being the current element okay, so this would

be 4Q but I am not interested in OQ or OP what I am interested is actually in this vector R okay,

which is the vector from the source point to the field point okay. For our own sake we already

know that this angle from the z-axis to the point P will always for the radial vector will be equal

to θ and we will call the angle between OP and OQ by α.

And in general this α+θ will not be equal to π/2 what is this, whyi s it not equal to π/2 let us go

back to this kind of a simple picture over here okay, so I have this picture this is my z axis okay

so this is the z axis this is the loop this is the current that I am considering now imagine that I

have no I am considering the current and I am evaluating the field at the tip of my index finger

okay, what is the angle so this point you can consider this as the origin so if I had one more

finger I could have pointed it like this and you know are pointed like this and then shown you

that the angle made by this vector which is from the origin to this  one is the angle θ okay,



whereas this  particular line is the capital  R vector okay that angle between that one and the

position vector okay.

So this is the position vector so the angle between these two so you can see this particular angle

right so shown by my left hand thumb this angle is α. Unless I am actually on the y axis at which

point you know this α will be in such a way that this angle α plus the angle θ will be equal to π/2

in general they are not okay, so in general α and this one are not in the same direction. However I

can draw a projection okay I can project this P on to the y-axis and this amount of projection that

you are going to get let us call this as some P' so OP' is certainly equal to R sinθ, where R is the

magnitude of the vector OP okay.

So this OP' is r sinθ but if I know further project so this is the unit vector let us say along the OQ

so if I further project OP' on to OQ line okay, that is the OQ line is this one so if I further project

it on to this one the corresponding projection that I am going to obtain will be whatever the

magnitude of OP' which would be r sinθ times this angle okay, this angle is now in the XZ plane

given  by  90-Φ   therefore  this  would  be  cos  of  90-Φ  the  magnitude  of  vector  of  OP'  the

magnitude of the unit vector OQ which will be equal to 1.

The angle between OQ and OP', OP' is on the y axis so this cos of 90-Φ  cos of this angle times

this one will be equal to r sin θ sorry, this is sinπ, why is it sinπ  because cos of 90- Φ  is what

you are looking at so cos 90-Φ  is cos 90, cosΦ +sin 90 sinΦ  and we know that thisquantity is 0

so this is sinΦ okay, so this is actually important for us to note later on okay, we will come back

to that expression.
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First write down what is A here, A at Point P is given by μ0Ia/ 4π  these are the constants which I

am pulling out of the integral so there is because I am assuming this one is μ0 and the current is

now not in terms of J but it is in terms of Idl' because I am considering the filamentary current

there is no integration over the volume the integration is over only the line and then we have

already seen that this Idl'=I =adΦ' where adΦ=dl so multiplying it by I, I get this one okay, so I

can write this μ0 Ia/4π  and then I have on to this particular expression which is adΦ'/R where R

is the distance that we have already talked about.

And what is the direction for this a the direction for A is actually the direction of the current

which is along the Φ axis, but a unit vector Φ can be written in terms of x and y coordinates as

Φ=-sinΦxˆ- sinΦ'  because I to represent this one as not Φ  but Φ' or we will simply represent

this as Φ  itself kind of simplify Φ’s are I know this one so this would be - sin Φxˆ+cos Φyˆ

okay,  so I  know that  conversion from the vector  Φ  in the cylindrical  coordinates  or in the

spherical coordinates onto the x and y coordinates okay.

Now here is an important point let us go back to this loop okay, there was one current element

along this dΦ' located at Point Q if I consider symmetric point okay, about y this is not a nice

symmetric point but if I consider a symmetric point about y there will be a current element going

in this way correct, let us call this point as some Q' point and what is the direction of the current

element along this Q' point that would be along the Φ direction, but if you now look at the two



lines that we have or the two contributions of this Q and Q' current elements one will be in this

direction the other one will be along this direction okay.

And what is the resultant of these two the resultant will be along this direction which happens to

be along -X direction okay, so the resultant field is only along the – X direction and therefore we

do not have to worry about the y component of the field, because the field will be along the -xˆ

direction okay, so I can go back and write this a as μ0I small a is a constant so I can pull that out

divided by 4π I still have an integral of dΦ' okay, and -sinΦ  and this was along the Φˆ direction

divided by R okay.

But at point P, x=0 right, so when x=0 the corresponding vector Φ you know unit vector Φˆ will

be equal to -xˆ therefore I can substitute for xˆ=-Φˆ in this expression replace the minus sign with

the plus sign, okay. So now I have the potential a written on this one from this triangle which is

POQ where the angle between OP and OQ is α I can write down from the law of cosines you

have to remember your geometry for this one I can write down the law from the law of cosines

as R=√r2+a2-2a rcosα okay, and r cos α is actually a projection of r onto the line right.

So this r cos α in fact should be equal to r sinθ, r cos α is the projection of this vector r or the

vector  OP onto the line OQ and this  correction  of OP onto the  line OQ precisely what  we

calculated by first projecting OP onto OP' and then projecting OP' onto Q which gave us r sinθ

sinΦ therefore this r cos α will be equal to r sinθ sinΦ  okay, so you can substitute for that one

and instead of cos α you can write this cos α sinθ sinΦ okay.
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So what happens to A, with A will be along the Φ direction so we now know that a is along the Φ

direction at the point P and this would be given by μ0aI is a constant divided by 4πr  integral 0 to

2π  sinΦdΦ remember this was in the numerator in the denominator I have √r2+a2-2ar sinθ sinΦ

okay, under root this in general is very difficult to evaluate but we make an assumption that r is

much larger than either is we are at a very, very far away distance from the loop and in that limit.

I can simplify this expression I can remove a2 and I can simplify this expression by removing r2

outside the square root and I can rewrite this as μ0aI/4πr2 okay, because r came out and integral

0t o 2π  sinΦdΦ/1-a/rsinθ sinΦ  2a/r sinθ sinΦ  under root but if I know that 1 plus  square root of

from binomial theorem √1+x is approximately 1+x/2 therefore if I remove the square root then

this would be this 2 will go away because there will be a division by 2 there so it would be 1-a/r

sinθ sinΦ  I also know that 1/1-x  is approximately 1+x  okay, when x is very small and in this

case t is small.

So I can write aΦ as μ0I okay, sinθ a2/4πr2 or there will be a π  here okay so I or I can write this

as μ0Iπ a2 which is the area of the loop times sinθ/4πr2 you can now apply ∇ x a to calculate B

and if you do that you will see this can be written as μ0Iπa2/4πr3  you have to actually carry out

this I will leave it as an exercise for you, so times 2 cosθ rˆ+sinθ along θˆ so this expression for

magnetic field is a very important expression or the expression for the vector potential is very

important when we discuss loop antennas at the end of the course.



I know I have left a few steps as exercises for you this problem is slightly difficult but I wanted

you to understand, I want you to understand this problem how to solve it because these results

are very useful for our antenna analysis. And if you look at the magnetic vector potential B that

you have calculated and you go back and calculate the electric field of a dipole in the far away

region the fields will actually be identical except for the constant factor so the field configuration

of an electric dipole which is just a short you know two charges separated +Q and -Q by a certain

distance is exactly equal to a dipole which is a small loop okay, and at a very far away distance

the field concentrations are equal to each other.

Therefore many loop antennas can be analyzed by the equivalent electric field analysis of the

dipole analogy I mean of the dipoles with this we stop at this module, thank you very much. 
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