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Hello  and  welcome  to  NPTEL mook  on  applied  electromagnetics  for  engineers.  We  were

discussing in the previous module the Laplace’s equations and its use to find out electric field,

we setup the problem of parallel plate in a conducting system, we will solve that system in this

module first to show you how one can calculate electric field E and corresponding in the quantity

capacitance of these two parallel plates using, by solving the Laplace’s equations.

(Refer Slide Time: 00:52)

Now we see that Laplace’s equation between the regions will have this form right, so δ2V=0,

why it should be equal to 0, because I am going to assume that the medium in between is filled

with the perfect  insulator  having the permittivity  of ε okay. So it  is  a complete  insulator  in



between these two plates. As I said the plates themselves have an area A which is quite large

compared to the thickness of the plate.

So A is much, much larger than D, there is a reason why I consider A to be much larger than D,

because all the calculations that we are going to do are very nice and very excellent calculations

as long as you are in the center of these plates okay. When you come to the edges, the electric

fields, you know you will see that one, so that in other modules that these electric fields would

not be normal to these conductors and they will actually bulge a little bit okay.

So this bulging phenomenon is what is called as bulging of electric fields is what is called as the

fringing effect and the fields that you are going to generate will be what is called as fringing

fields. So we are going to going to neglect this fringing field, because my goal is to try and show

how to solve this Laplace’s equation and then maybe you obtain the capacitance value for this

system assuming the condition very much larger than D.

Let us complicate our life in the first example itself. So I have δ2v=0 in two dimension, this is

nearly the case of a two dimension, I can write this as δ2v/ δx2+ δ2v/ δy2=0 with the x-axis taken

perpendicular to the plate, so this is how the x-axis is going, and then you can consider this to be

the y-axis, and along this axis will be the length of the axis z which we do not need to worry

about it at this particular point.

You do not even need to worry about this second term, this δ2v/ δy2 term, because the condition

or if the symmetry of the problem is such that if you move around or if you move from the top

plate to the bottom plate or from the bottom plate to the top plate you are actually seeing or you

are moving at a certain distance right okay, and then you, so when you start with the bottom plate

as you keep moving and you hit a distance of x=d which happens to be very quickly right, then

you see that there is a second plate okay.

However, if you stand in the middle and then move side way, so you stand here and then you

move along the Y, so we assume that this length of this one and hence the total area of the plate is

so wide, that you will have to move substantially in order to encounter the end and because of

that reason we can neglect any variations of the potential V with respect to the Y-axis. As you

keep moving along the side ways okay, either on to the left or to the right you encounter the



fringing fields or you encounter the boundaries at a much, much larger distance compared to the

fields that you are encounter.

So is the plates that you encounter when you move along the x-axis. So the fields are strongly

dependent on X, and extremely weakly dependent on Y which allows me to completely neglect

this δ2v/ δy2 term. So the equation that I am trying to solve now becomes very simple, I have

d2v/dx2=0 how do I solve this integrate once integrating once gives you dv / dx = some constant

one integrating this one again gives you V(x) = C1  x+ C2 this is something that you know from

your differential equation, so integrating this one you get C1x + C2 where C1 and C2 are to be

determined okay we do not know what these are and we need to determine do we have enough

information to determine this constant C1 and C2.

Yes we do we know that the potential everywhere on the bottom plate happens to be equal to 0

and the bottom plate is actually kept at x = 0 and potential everywhere on the top plate happens

to be equal to v0 and the top plate is kept at x = d okay.
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So I apply the condition that @ x = 0 the potential that I am finding or the potential that I have

must  be  equal  to  0  everywhere  because  this  happens  to  be  the  bottom conductor  which  as

grounded so go back to the equation V(x) and substitute x = 0 which will give you 0 okay that

must be equal to C1. 0 + C2 right C1x + C2x = 0 clearly C1. 0 will make this entire thing go to 0

and the condition that you are going to get for this one is that C2 = 0.

And the condition that I have applied is actually the boundary of the problem right so the bottom

plate  defines  the boundary and therefore  this  is  called  as boundary condition  so I  applied  a

boundary condition one saying that @ x= 0 potential v = 0 substituting into the expression that

we have obtained allows me to find out C2 = 0 @ x = d potentially sum applied potential V0 so V

@ x = d = V0 the potential on the top conductor this must be equal to C1. d right x = d.

There  is  no C2 here C2 is  already 0 so this  allows  me to  write  C1 as  V0 /d  so my general

expression for the potential V(x) can now be rewritten as v0 / d so V0 / d times x does it stratify

the two boundary conditions the potential V(x) that we have written does it satisfy the potential

are the boundary conditions yes, @ x = 0 this right hand side quantity V0x/ d0 at @ x =d this

right hand side quantity is equal to V0 which is what we have for the upper conductor or the top

conductor okay.

I have now found out V(x) there are two questions I need to answer is this potential okay unique

in other words is there another function of x which would satisfy the boundary conditions okay

and stratify Laplace’s equation unfortunately the answer is no okay so you might for example



think of this I am just trying to pull a certain this one out from my side so let say V0 / d2 into x2

okay so this field clearly will satisfy the boundary conditions so at x = 0 this f of x = 0 and that x

= d because d2 in the numerator cancel to this one of denominator this seems to be satisfying the

boundary condition okay now if I try to find out what is d2 f / dx2 right which is what I should be

able to find.

When f of x is happens to another potential so new or another voltage then differentiate this one

twice what you get twice differential of x2 = 2 okay is this quantity = 0 now this quantity is= 0 so

in this case you had a situation where the true solution, so if this is x = 0 and this x = d the

potential at x = d happens to be V0 the potential at x = 0 is 0 the solution in between has to have

a linear leave varying.

Because you see that this is the true solution right so this V0 / d into x the slope of this line is

V0 / d and when you go as distance of d we actually reach the potential of V0 the potential that

we had here, was a quadratic one that is assumed f of x is a quadratic one which also starts a 0

here and ends but V0 but it does so in a quadratic manner unfortunately, this potential does not

satisfy Laplace okay and hence cannot be  a solution in fact the solution that you obtained if it is

satisfies Laplace’s equation.

If  it  is  satisfies  boundary condition that  solution will  always be unique,  okay this  is  a  very

important  thing  to  note  the  second question  is  can  I  always  find  the  solution  can  I  always

Laplace’s equation and then actually obtained a solution, I have already seen that if I obtain a

solution  subject  to  boundary  conditions  of  the  problem and  the  fact  that  solutions  satisfies

Laplace’s equation that solution will be unique but when I always be able to find a solution turns

out that except for a pathological cases.

Which we do not consider there is a nice theory which tells you that these Laplace’s equations

usually have a solution okay, so we do not really bother with the existence problem at this stage

there only concerned with uniqueness and we have not proved this uniqueness in a very rigorous

manner but we have given you the hint has to what can happen, so you might have a situation

that once you obtained a solution if that solutions satisfies boundary condition and if a solution

satisfies Laplace’s equation.



Everywhere then that solution is unique no other method can give the different solution right

because if the other solutions exist then either they must be some linear multiple of the existence

solution which anyway you have taken care of or if other solutions exist then either they do not

satisfy Laplace’s equation but satisfy boundary conditions or satisfies Laplace’s equation but do

not satisfy boundary conditions, right. So in that manner you can actually see that there is only

one unique solution for Laplace equation and that is what we are trying to find, alright. Now we

have found a potential is it possible for me to find out the electric field why, yes.

(Refer Slide Time: 10:20)

Electric field is given by – ΔV and in this case V is a function only of X so this becomes –x^

∂/∂x or rather d/dx in this case since V is a function only of x of V0/ d x and what is this,

differentiating this fellow what you get is – x ^ okay, V0/ d tells out that the potential you know

is actually negatively directed which means that it is directed from the top plate that make sense

because top rate is the one that was kept at a higher potential V0.

And from the top plate the electric field happens to have a constant value of the electric field,

okay. So this – sign is telling you that the assumed x direction was from bottom to top so this

was my x axis  right  this  was my y – axis  the electric  field  is  directed  from top to  bottom

therefore there is you know lines coming from the top conductor to the bottom conductor out

there okay and the magnitude of these is given by V0/D.



So we see here that the electric field is you know coming from the top conductor to the bottom

conductor and it has a value of V0/d so it is a constant conductor, now how do I obtain the

capacitance well to obtain the capacitance I need to know what is the total charge told either on

the top conductor or the bottom conductor now I know from boundary condition that if I consider

you know a small region here, right.

Which might be the region that I consider over here than in this region which just extends below

and I know that there is nothing in the below out there so if this small region which has an area

of say ΔA right the corresponding charge enclosed must be equal to ρs ΔA, ρs being the surface

charge density but boundary condition for D tells me that if I have this is a electric field the

corresponding D field will also be like this, right. So D field happens to be normal to this top

conductor and the normal D field because there is no second magnetic there is no second D field

so there is only one normal D field that must be equal to ρs, okay. And D and 1 is nothing but ε

times E and 1 that is equal to ρs.

So I can substitute for ρs as ΔA ε E and 1 but what is the electric field the normal electric field

we have already you know obtained and that is given by V0/d okay so this is the charge that I

have  now  this  divided  by  the  potential  to  which  we  have  you  know  applied  the  potential

difference  between  the  two plates  is  actually  given  by V0  and  this  ratio  will  give  you  the

capacitance this is the slightly more rigorous way of solving this one I am skipping that one in

the interest that I can get to another interesting problem, so this is the basic idea which is still

okay, so you see that the potential difference is v0 that we have already specified the total charge

is given by ∆A over this small patch ∆Aεv0/d clearly v0 cancels on both sides and what I obtain

is ∆Aε/d, okay.

Instead of considering this small patch of area I can consider the entire area itself so when I take

the entire area I am trying to you know sum up many, many ∆A’s such that they will all sum to

one single A and then I get εA/d or Aε/d so I usually remember this in the form of εA/d and this

happens to be the capacitance of a parallel plate capacitor. So you might have actually used these

relationships  in  your  earlier  studies  without  really  you  know see  where  this  relationship  is

coming from.

The moment you have kept to you know conductors are two different potentials or a potential

difference between them there will be electric fields generated, because there will be a different



potential there will be electric field and this electric field is usually directed from the higher

potential to the lower potential and this electric field you know if it leaves a particular conductor

it will always leave at a normal case, so as soon as this is uniform it will leave at a normal case.

If is not then it will bulge and show all the fringing effects which we will not deal right now. So

our goal after looking at this parallel plate capacitor which might have seen to be too excessive is

to consider another interesting you know example of a transmission line and remember parallel

plates can also be used as a transmission line or their cousins parallel wires can be use as a

transmission lines. Now we are considering another transmission line.

(Refer Slide Time: 14:45)

Which  we  call  as  a  quaxial  transmission  line,  so  we  have  already  discussed  this  quaxial

transmission in the quaxial line what you have is a inner conductor of diameter 2a and an outer

conductor of diameter 2b. Usually you connect the outer conductor to ground and then the inner

conductor you connected to a voltage source okay, so you connect a certain voltage source to this

one so that inner conductor is usually at a higher potential and a constant potential we will again

consider that the inner conductor is at a potential of v0 okay. But then we have a small problem



here, well the structure is actually cylindrical you know system right, it has a cross section which

is circular but then it also has a axis along z axis okay.

As long as we consider a uniform cross section and the cross section appears to be something

like this okay, the inner circle has a diameter of 2a the outer circle has a diameter of 2b as we

have discussed okay, so in this case and I have also kept the inner conductor to be at a higher

potential which is at v0 and I have consider the outer conductor to be at a potential 0 volt okay.

So if this cross section is maintained as you keep going along the z axis then it is possible for us

to  obtain  electric  field and calculate  the  capacitance  of  this  structure,  okay without  actually

solving Laplace’s equation in the three dimensions.

So we are going to solve Laplace’s equation in the two dimensions so you have ∇2v=0 and now

we need to first specify the boundary conditions as well,  well we have already specified the

boundary conditions  by keeping the inner  conductor  at  v0,  thus at  r=a right,  this  is  the first

boundary condition the potential at a will be equal to v0 and the second boundary condition is

that at r=b where r is the radial distance, okay.

The potential v at r=b will actually be equal to 0 okay. Now v can depend on r,  and z in generalϕ

since we are considering only two dimensional Laplace’s equation so we have no z dependence

but now can r potential depend of φ, again do the test suppose this is my coaxial cable okay now

if I keep moving around this coaxial cable does this cable look any different right so imagine this

and  then  keep  moving  around  like  this  does  looks  any different  in  this  case  the  pen looks

different because there is some mark out there.

But  if  you  just  imagine  this  surface  and  you  keep  moving  around  there  is  absolutely  no

difference so the potential does not have a φ component that is as you move around there is no

difference out there, however if you keep moving away from this one right and you reach the

potential  or you reach the circle  at  r  = b then the potential  have to drop to 0 there.  So the

potential must start here at V0 and as you move away from it and reach the second conductor

you must have to I mean it has to drop to 0 there.

So this potential is actually function of only r okay, so likely for us our problems are not so

difficult we have the potential only as function of r. only small difficult is that we need to know

what is this ∇2 V = 0 in the cylindrical coordinate system and I would not you know I bore you



with  the  details  of  derivation  of  that  one  but  I  will  just  give  you  quickly   what  is  the

corresponding expression, since V is function only of r I can replace the partial derivatives with

the full derivative. 

So I have 1/r d/dr or dv/ dr this being the ∇2 v component for which this particular problems is

concerns  so  for  this  problem  ∇2v  =  0  actually  reduces  to  this  equation.  Vr  of  course  not

considering the case when r = 0 our boundary start at a and then end at b therefore this equation

equal to 0 also implies that r Dv/ dr must be some constant k and therefore dv/dr = constant k /t

which allows me to you know integrate once more and then say v® = k log R +d.

So this is the general expression that I have I need to apply the boundary conditions and then find

out the actual values of k and d.

(Refer Slide Time: 19:12) 

So I will do that one by first considering the boundary condition at b because I know v(b) the

potential at that r = b will be = 0 and this is = k log (b) + D and D of course you know solving

this one gives you –k log b, then v (a) = V0 that is a inner conductor is kept it a potential v0 so

this is V(a) = V0 okay. And this one once you put ion you can then solve for k, k happens to be

v0/log (a/b) I will just leave this as a small exercise to you to show that this is the this is indeed

the  correct  solution,  and  therefore  v®  anywhere  between  the  regions  of  inner  and  outer

conductor this v® is given by v0 / log (b/a) b is large than a time slog of (b/r) 



So this potential does it satisfy Laplace’s equation I hope you can show that it actually satisfies

Laplace’s equation and what happens when r = b the potential  drops term to 0 because this

wound be log of 1 so it  is gone what happens when r = a this would be log of b/  a in the

numerator divided by log which is the natural log I am talking about log of b / a, so that will

actually b = v0.

So this is the unique solution for v how about electric field e? E is minus gradient of v again you

need to find out what is the expression for the gradient in cylindrical coordinate system and then

you can you know show that this is simply equal to –rˆ dv/dr I just now obtain this one from the

math hand book and then if you put Interviewer: his equation and then solve it you obtain the

electric field as radically directed r0 v0/rlog b/c so there is some constant out there but then the

electric  field  actually  along  radial  but  as  if  keep  going  away  the  electric  fields  is  actually

dropping down oaky and then  the  potential  of  course starts  off  with  V0 at  r=a  and then  in

logarithm b/a goes down to 0.

So the constant potential so this is at r=a the potential is V0 the potential actually goes as a log

all the way up to 0 so you will have constant potentials okay so these are the constant potential

contours and then the electric field will be perpendicular to this and the electric field in this case

will also be going down in terms of the radial direction and it will be going as 1/r do not be the

constant electric field out there.

(Refer Slide Time: 22:06)



And this is the electric field at you are going to obtain now that you have obtained you know the

electric fields then what will lead to do is to kind of find out what is the overall charge so I know

D is related to electric field in terms of ε times E so D will be given by r^ εV0/r log b/a now what

I am interested is to actually find out what is the charge on the inner conductor again I have to

enforces that I am not going to consider the Z axis okay.

So or I will consider inner conductor means actually want to consider very small amount of ∆z

okay and then put a surface around it so this is the inner conductor over which I am trying to find

out so once I find out what is the charge here then I take the charge divide by ∆z so I have to take

away all the z dependence okay.

So you can show that this is nothing but integration over ∆z 0 to 2π right because this one is

happening at r=a we have to evaluate D at a okay and ds is given by r or adϕ right so this adϕ

along r direction and ∆s so I  am going to integrate  this  one over ∆z as I told you and you

evaluate D at A so r=A will be the condition so you have εV0/a log of b/a right.

And then charge divided by ∆z is what I will call as line charge density ρL and this line charge

density ρL will be equal to after you integrate this equation and since this integral over Dϕ will

simply pulled out it to 2π to you 2π at the outside of the integral so you get εV0 2π a will cancel

in the numerator and denominator you get log of b/a okay.

Now what is applied potential the applied potential difference between the two conductors is V0

so now if you define what is called as the capacitor per unit length it get ρL/V0 which is a line

charge density on the inner conductor I am only considering the inner conductor you can do the

problem by considering the outer conductor is slightly more difficult to apply gausses law top the

outer conductor.

Therefore we did not consider that but over the inner conductor you have to consider the closed

surface and this surface has to have a small you have a small length ∆z along with it okay then

you divide all the quantities with respect to ∆z in order to take away the z dependence so now

you have a capacitors per unit length ρL/V0 which is given by 2πε/ log of b/a.

This is the very important relationships for quaxial cable you should remember this quantity or

this particular expression and you might has how about the inductor per unit length when why



am  I  interested  in  inductor  per  unit  length  because  I  know  that  for  the  quaxial  cable  the

characteristic impedance Z0  can be given by inductiveness per length divided by capacitor per

length.

And there are ways of actually measuring what is Z0 okay so since I know how to obtain Z0 I can

first get this I can Z0=Lpul/Cpul and I know how to measure this left hand quantity Z02 I know

how to calculate these capacitors, calculating inductions in this case is simple but it is not really

necessary. So if you know what is the z0
2 co-axial cable, you know what is the capacitor per unit

length co-axial cable calculate from this expression, you can easily substitute for Cpul and then

write  down or find out what  Lpul which is  the length and this  given by 1/ z0
2Cpul  .  So this

completes our couple of solutions for lap lasses equation.

You might have a lot of questions over here, so what we have covered is just merely scratching

the surface. We will consider the two dimensional equation and solving in the next module but

here is one very important question. We talked of parallel plate capacitors, we talked of parallel

wires, we did not calculate or we did not solve the equation for the parallel wires but you can do

as well. And then we can calculate the capacitors of a very important transmission line called as

co-axial transmission line.

However you must have notice something co-axial lines, wires, plates they all are suppose to be

used at a very high frequency. Which means that the potentials that you are applying are not

going to be constant potentials right, so there will be change in respect to the time. So in those

cases whatever the capacitors that we have calculated, is this formula valid. The formula that we

have calculated comes from the electro static point of view. Where the fields are not varying with

respect to time, so strictly speaking these formulas and the field that we have obtained is all valid

only at Dc frequencies.

That is only at dc not when the frequency is different. For low frequencies one can neglect the

changes in the electric filed and consider, pretty much to be constant, but to be really true, these

equations  must have,  what  is  called as the correction  term.  And this  correction term can be

calculated using Maxwell equations or you can use what is called as quasi statics analysis and

then calculate the correction term and keep adding these correction terms until your solution

essential converts.



And this quasi statically analysis is a subject of some other module in this particular course. So

in the next module we will talk of 2 dimensional Laplace equations and then solve the equation

to round up our study of electro static, until then thank you very much.
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