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Hello and welcome to NPTEL mook on applied electromagnetics for engineers. In this module

we will discuss the boundary conditions for the electromagnetics field quantities A, B, D and H.

what are these boundary conditions and why should one consider or one should study that. 

(Refer Slide Time: 00:35) 

Now let us assume that this paper that I have which separates two regions. This region, you know

where this pen for example would be present okay, is what I call as region 1, here the material

properties are described by a certain set of values for μ and ε. So let us say the region in this

region here to this particular side of my hand, this is μ1 and ε1 where μ1 is the relative or the μ1

is the permeability and ε1 is the permittivity.



That could also be conductivity, so let us call this as σ1 in this region, separating on this side

okay, on this side where my hand is showing, so I have a second medium which is μ2, ε2, and

σ2, so these are described by the parameter values of the material μ2, ε2, and σ2. This boundary

between the two mediums is actually  very thin,  although you can see that there is a certain

amount of small thickness of the paper okay, which is actually existed in a real medium.

In a real medium this thickness of these papers that I have considered as the boundary required

two regions will actually correspond to the few layers, few atomic layers or few molecular layers

where the properties change continuously from μ1, ε1, σ1 to μ2, ε2, σ2, no change can be abrupt

like boundary. But if you are looking, you know like from me using the, you know telescope or

whatever that is or rather if you are looking at it from a distance, a few layers of molecules which

might be about a few 10s or 100s of times chomps does not really bother you.

Because if you actually look at for example, you take a lens okay, a lens will have a certain glass

property that could be different from the surrounding air medium. However, the thickness of the

lens  is  so  much  larger  compared  to  the  few  atomic  layers  10s  of  atomic  layers  or  10s  of

molecular layers thickness that you can consider the thickness of the boundary that separates the

medium to be almost equal to 0.

So we call this as jumped boundaries and we call these boundary conditions as jumped boundary

conditions, because the material property jumps suddenly from one value to another value okay.

And when such a thing happens is then a guarantee that the electric fields, magnetic fields, D

fields, the fields, whatever that we calculate in region 1 and we calculate them in region 2 are

related to each other or not first of all shroud they related if they are related how are they related

that is precisely the subject of this module to set the stage okay. 

Let me draw a line here and call this line as the dividing boundary between two regions as we

said this is μ1, σ1 and ε1. Although for now let me just focus on μ1 and ε1 we will talk of  σ1 later

because only one equations requires σ1 and suddenly on the other side of this boundary you μ2 σ2

ε2 okay we have solved Maxwell here okay and Maxwell tells us that the fields here are given by,

the vector quantities E1 and H1, D1 you came also have a J1 in case you wish to talk of the

continuity condition for J okay.



But  for  now we will  not  worry  about  J  okay so  we  solved  Maxwell  equations  along  with

whatever the initial conditions that I am necessary and we used the Maxwell’s equations to come

up to the corresponding values E1,  H1,  D1 and B1okay so these are the fields and we solved

Maxwell  in  region  2  as  well  where  we obtain  E2,  H2,  B2 and  D2 these  are  all  your  vector

quantities which vary both as function of r okay which vary both as a function r as well as a

function of time.

So all the field quantities are functions of space as well as time so these are the varying and

space changing field quantities electric field magnetic field H or the magnetic field intensity H

electric flux density D and magnetic flux density D now that we have these equations with us

what is the relationship between E1 and E2 we are not interested only the relationship between E1

and E2 here we are also interested in the relation between the boundary okay.

So how does you know having electric field E1 in region μ1, ε1 and electric flied E2 integer μ2, ε2

and having a boundary separate the two regions relate the values of the electric fields E1 to E2 in

order to understand that one let us fix two points okay so let us fix two points let us call this as

point 1 and point 2 and I will also consider a unit vector in the direction from 1 to 2 okay you

know that between any two points there will be a line right.

So can always draw a line so this is the line between any two points and then between these two

points there will be a bisection for simplicity let us actually take these points 1 and 2 in such a

way that bisector happens to be just the boundary that you have considered okay so between any

two points you have boundary okay and in fact if you think of this as a 3 dimensional extension

right.

We can see that this is actually defining the plane as well right so this is actually designing a

plane as well right, so this is actually designing a plane as well so you can imagine that I have

two point here and then there is a line here and then there is essentially a plane that connects

between these two points so this is a situation that I am considering so the point 1 is located here

and point 2 is locate on this particular side okay.

Now by some means we do not really know what those means are we have calculated the electric

field that is called this as even, and we have figured out there it is direction at this particular time

is given by this particular black arrow that I have different similarly E2 we have calculated and



that also is seen to be having in this direction for maybe you know we can just we erase this one

and  then  get  back  to  a  simple  thing  that  I  would  actually  use  to  calculate  the  boundary

conditions, so I will orient my boundary in such a way that this is the boundary because it is

makes my task little easier.

Okay so these are two points, point 1 and 2 and we know that these two points essentially are

bisected by the plane, above this plane you have µ2 and ε2 below this plane you have µ1 and ε1

this is the same situation I am just you know made the boundary horizontal rather than vertical so

that I can write the equations on this side okay, so I have considered the electric field to be okay

let me consider this electric field over here to be calculated and pointing in this direction even

and the electric field here to be pointing in this direction.

And having a certain value E2 here, now what is the relationship between E1 and E2 in order to

answer that we need to go from what we call as the point form, of Maxwell’s equations into

integral forms of Maxwell’s equations where no more difficult than the point form and for our

benefit here okay we will just write down the ϕ forms okay this ϕ forms were the or more basic

there more fundamental they will always hold, even when the boundary is actually moves it

okay.
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It does not matter when the boundary is present or not even when the boundary is moving this

integral forms are always valid so what are the integral values we know that ∂ x e you know if

you just go back and write down the curl expression in terms of the line integral over the closed

path is going to move nothing but E.dl right and that should be equal to – integral of ∂b / ∂t.dS,

so this equation is Faraday’s law which is simply telling you that emf over that closed loop okay,

must be equal to – d/ dt of flux linkage right.

So the rate of change of flux in case will be driving the emf around this a closed for there is what

this equation tells you them ampere Maxwell’s law will tell you that the magneto motive force

over a closed loop which is given by integral of H. dl must = the total current I surrounding a

particular surface the open surface through which this contour is being defined so there will be a

current I + ∫ ∂D/ ∂t . ds which is how the displacement current is actually changing right, and

then you have two additional equations over the closed surface so these where the closed loop

okay and these where the open surfaces that we had considered.

Over the closed surface the way in which in D. ds or the total electric flux should be simply

equal to the amount of charge that is enclosed and similarly integral over the closed surface of B.

ds must be equal to 0 okay because no there are no magnetic charges out there to enclose, so

these are the integral versions of the equations these are fairly the same so let me just write down

this as the magneto motive force, okay.

Must be equal to the current + whatever the time rate of displacement in other words this is the

displacement current that I have, so now I have all this equations what I do is very simple, I

imagine that you know I extend a path here which includes paths or points 1 and 2 and then I

take this particular path, okay. So I take this path okay and the  you know this is the way in

which I will take the path and I will also assume that over this path the electric field E2 or the

electric field E1in the appropriate regions are not varying much.

So let us call the path as having a length L and having the width W okay, clearly half the width

lies above and half the width lies below this particular boundary okay. We will also assume that

the value of L is not so large I mean you are not taking a kilometer a long paths out there, you are

just taking a path which is very, very short it is just a few infinity symbol 11 paths that we are

taking.



Now over this path I will apply faradays law, okay. So what do I get when I apply faradays law?

Well I in order to apply the faradays law let us also see that if I go from left to right and call that

as the positive direction in which this is increasing then I need to find out the corresponding

tangential component of E2 that is obtained by projecting this E2 onto the path which goes from

left to right, right?

So when I do that one I see that I can write this as E2 x L or rather E2 T L where E2 T will be the

tangential  component,  so  this  electric  field  here  will  have  two  components  right,  so  one

component  is  a  tangential  component  which  is  what  is  important  because  you  know  this

tangential  component  multiplies to the path length out there and there will  also be a normal

component which we will call as E2 L.

This normal component will be perpendicular to the boundary, so therefore this is not really the

path that you are looking at so imagine again that this is my boundary, okay. And on this path so

let me keep this particular point here and this is how my electric field is present okay so this is

my electric field, now this electric field on this you know if I take the path along this paper, okay

I need to first decompose this electric field into corresponding normal components.

So you can see that the normal component is coming perpendicular to this paper and because of

this there will also be a tangential component out there, okay. So there is a tangential component

which is along the path that you are looking at and there is a normal component which is coming

perpendicular  to  the  boundary  sand  because  lien  integral  always  demands  the  tangential

component I write this as or I obtain I am interested only in the tangential component in region to

the tangential component is E2 T and that is what I write.

You know multiplied by the path length which is L right and on this side I have the normal

component okay of corresponding to E2and on this side I have the same normal component but

these two are in the opposite directions, therefore even if I include them because the science here

will be different and the magnitude of the normal component is the same on these two paths

okay, then normal contribution to this closed curve will be equal to 0. So the only thing which I

am interested now is what is the contribution of this path and what is the contribution of this one.

Again  if  you  decompose  here  electric  field  E1  into  corresponding  normal  and  tangential

components so this is the tangential and the normal components so you have E1t and you have



E1n  as  the  tangential  normal  components  so  you  can  clearly  see  that  only  the  tangential

component will contribute because on this path the normal component will have whatever the

contribution that will cancel out the contribution of E1 normal component of electric field on this

path. 

So it is only the tangential components that contribute then there is also another catch, on this

side we consider the traversing of the path as positive, therefore if I move along this direction

then I need to consider the direction of dl to be opposite to the direction of the path along which I

have taken in region 2. The net effect is that what I obtain here for the next move for the electric

field in the region 1 will have a negative value multiplied by the tangential component E1t times

l.

So this is what I obtain for Faraday’s law on the left hand side, but what is on the right hand side

on the right hand side I should have no, I have a minus sign here that is no problem. But then the

total flux that is linking this closed loop you know has to come because of the magnetic field that

is coming out of this particular surface, so now I have actually taken this surface and I need to

find out what is a normal component of this surface okay, and integrate ∂ /∂t on to that normalDD

component.

The total area that I have is lxw and it is the normal or that is the  component that is comingBD

perpendicular  to  this  loop  that  I  must  include  over  here,  so  let  me  call  this  as  some  BD

perpendicular component times lw or rather ∂B/∂t component times lw is what I'm looking at

okay, and this is the equation that I now have, what I do is I divide by l on all sides okay, so

when I divide by l on all the sides what I obtain is that E2 tangential- E1 tangential should be

equal to -∂B1/∂t times w. 

Now what I do is I shrink this path going to 0 so I shrink this path eventually I actually obtain

okay, or in the limit of w going to 0 I obtain above and just below the path okay, so which means

that unless my magnetic field component B perpendicular blows up to infinity the product here

on the right hand side will tend to 0 and clearly the magnetic fields cannot blow up to infinity,

because infinity magnetic field does not really make sense, okay.

We assume that all fields are finite and therefore the right hand side completely goes up to 0, so

giving you the first boundary condition that the tangential  electric  fields must be continuous



okay, so the tangential electric fields must be continuous across the two boundaries that you have

talked about. So let me just write that one the first law or the Faraday’s law tells you that.

(Refer Slide Time: 16:20)

E2t-E1t must be equal to 0, so the tangential continuity of the electric fields is the first boundary

condition that you are looking for, by the same logic this second Ampere Maxwell law will tell

me that ∫ .d  can be rewritten by following the same path that we actually followed so I canHD l D

write this one as H2t-H1t that must be equal to whatever the current that is coming out of this

path, so this was the boundary.

So and this is the magnetic field that I am writing out there okay, so I get H2t-H1t and then

whatever the current that must be coming out of this particular plain plus whatever this current

out of this plain plus ∂d perpendicular / ∂t time lw clearly if I divided every, so this is H2t x l H1t

x l  = the current the plus this  fellow. Now when I  take or I  when I  remove l  from all  this

equations that is divide both sides by l okay, I do not consider or I will see that this ∂D1/∂t

becomes or the l component goes away and then you have ∂d1/∂t x w okay.



Then if I now take the limit of w tending to 0 this quantity goes off to 0 simply because we do

not allow for infinity fields d. so the contribution as the loop shrinks down to a point or loop

shrinks down in such a way that you actually end up just having this kind of a loop here of

infinitesimally small  thickness  the contribution  from the right hand side or the displacement

current actually goes up to 0.

Now should this current I also go to 0, well it does not have to go to 0 for example if the medium

here is a conductive medium okay then I can actually have currents on this surface so all these

arrows or rather circles that I am drawing also putting this one over here, so this is simply the

case that the current is actually flowing on the sheet. So you can again go back to this boundary

out here imagine that below everything is a conductor and this these you know I am keeping

these pens over here and the direction of these pens you imagine that this is you know just on the

surface and these are the direction over which the magnetic fields is coming.

And since my loop is going up in this region going down and then going back up in this region

and coming again to the first region to complete the path, the current that I am interested is the

one that is coming out like this so if one of the medium is the conducive medium then I can

actually have the current component flowing along the plain or along the boundary and we call

this current as what is called as the sheet current okay.

And we use a different symbols for that one we use symbol of K to denote that this is actually the

sheet current and what the conclusion that you have to draw from this by writing the same path

and then trying to apply that boundary condition is that the tangential magnetic field components

H will be discontinues by the amount of this sheet current K and you cannot rule out this sheet

current unless the medium both medium happen to be only dielectrics, so if the medium happens

to be a conductor then there is a good chance that there will be a sheet current and you have to

consider that sheet current as the discontinuity component for the magnetic field.
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Now let us move on to talk about that conditions for d field and the d field imagine that I am

actually keeping this what is called as a pill box okay so I keep this pill box okay there is a

certain area on top there is a certain area below and you have to remember that these areas are

always pointing the opposite directions because the surface area is actually governed by the right

hand side road so if go like this then the surface on this plain is pointing up and if you go in the

bottom side the surface will be pointing in the below direction.

So the open surface components are up and down out there and what you are interested now is

the magnetic field component so let us say at this point this is d2 and at point this is D1 okay you

again split the magnetic field in to normal and tangential components and for this case you are

not  interested  in  the  tangential  component  yu  are  only  interested  in  the  normal  component

because that component is the one that would be perpendicular to the surface area okay.

And there is a certain length or the height of this one let us call this height of the pill box as H

okay. So integral of d.ds over the close surface when you apply to this two regions so this is

medium 2 this is medium1 what you obtain is the that the normal component of the D field in the

second medium which is D2n multiplied by ∆s where ∆s is the area of this  particular  closed

surface this surface on top as area of ∆s.

And if you go into the region there will be magnetic field but then the directions or the surface

element has become negative and if you now take that into an account is that –D1m ∆s and this

should be equal to whatever  the charge that is  enclosed again there will  be a case were the



charges or a enclosed because in right hand side what is that you get the charge enclosed for

other  than  charge  density  multiplied  by  so  the  charge  density  the  volume  charge  density

multiplied by ∆s multiplied by H okay.

Now if I take ∆s out I know divide on sight by ∆s and then let ∆s go to 0 then what I obtain is

Qv*H or rather not ∆s if I now et H go to 0 ∆s is anyway gone on all this sights so if I let H go to

0 this volume density is measured in Colum’s per meter cube and this H is measured in meters

therefore the quantity that I obtain will be  Coulomb per meter square and that  Coulomb per

meter square will be charge that you have taken and sprinkled on the surface.

So if this is my boundary look some were top so if I know put some charges on top of this one

we deposit  some charges  by  some were  whatever  means  that  I  can  then  this  charge  would

correspond to the surface charge density which will able has  ρs and we measure this one as

Coulomb per meter square and as a pill boxion in height eventually you just give me two kinds

of surfaces of height H is equal to 0.

You see that the displacement vector or the D vector the normal component of D vectors actually

become discontinuous by the amount of surface charge density so the equation that describes the

normal components D2n  and D1n that discontinuity or the difference between these two must be

equal to the surface charge density.

This is intuitively kind of placing to us because what does this mean D2n is the flux density that

is this coming out of the second you know pill box in the second region and D1n is the flux

density that is coming in to it  right so D1n you can because there is –D1n sign that we are

considered D1n is incoming D2n is coming out the difference in this two flux density must be

equal to the flux that is contained within that volume.  

And that flux is nothing but the charge that is contained again that if the two medium happen to

be dialectics then if I sending some D1n here D2n will be exactly equal to D1n because that cannot

be any left over D values otherwise there will be some charges and for two perfectly dialectic

medium there  are  no  charges  but  if  one  of  the  medium happens  to  be  conductor  then  that

conductor can have charge inside on its surface constituting.



The surface charge density, in that case the ion flux and the out flux might be different and the

difference between the influx and the out flux will be exactly equal to the surface charge density,

that the surface of the conductor can hold. Finally we have ∫B.ds = 0 and you can very easily see

that, this simply leads to the condition that the normal component Bn – B1n = 0. So these are the 4

major boundary conditions that we have described and we have discussed. 

(Refer Slide Time: 24:39)

The other boundary condition that involves ∂.J = -∂ρv/ ∂t I will leave this one to you to figure it

out  and  this  can  happen  in  the  medium  in  these  both  are  conductors  but  have  different

conductivity or one of the medium is the conductor and we can conductor for other case. So you

will again have to write the ∫ form of this that would be .J = -∂D/ ∂f ds it is the continuation

equation and you can very easily show that, the normal component Jn2 – J n1 when you evaluate

on the two boundaries.

That must be = 0 or Jn2 = J n1 okay. The conduction current as to be = that particular thing, so you

can study this one at you leisure, I would not describe this one because we will be using this

condition for the current density vector J as much as the boundary condition for the other field

components. The real value of boundary condition is that once I calculate the electric field in a

particular region by using Maxwell equations, usually the materials properties, I can calculate

immediately what should be the field on the other side.



That will allow us to know for example if you know I have a mirror or if I have a glass and the

light is coming in, and incident on this particular glass, these boundary condition allow me to

determine not only the fields over here, which neither I have determined, but it will also allow

me to determine the fields in the other region okay. Because I can relate e1 e2, d1 d2, b1 b2, h1

h2, I can find out what are the fields in the other region.

Then I can answer questions like okay, if I incident I waltz of power on to the glass, how much

power will actually be reflected? What is the fraction of the power reflected? What is the fraction

of the power transmitted? So instead of having one boundary what happens if I have multiple

boundaries and if I incident 1 Walt power here, 10 boundary layers what would be the power that

come out okay. So boundary conditions are very important when they deal with problems saucy

as incidence, reflection of a wave, understand concepts like total internal reflections.

And this boundary condition that you have derived are fairly general okay, there are no usual

things going on except the surface current density and there is the surface charge density, both

are little idealization, those idealization will serve very well for us in order to understand how

does the field behave from one point to another point, thank you very much. 
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