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Hello and welcome to the NPTEL MOOC on applied electromagnetics for engineers, so in this

module we will first tackle the problem of power calculation very briefly we will have more to

say about it later on and then consider the relationship between input impedance and the length

of a transmission line and consider few cases that are quite important when dealing with this

transmission line circuit. 

We begin by looking at the power calculation we know that transmission line carries a forward

going voltage and of course because the impedance is usually not matched at the other end there

will be a reflected voltage so there is a forward going voltage from the source going to the going

to the lode and from the load there will be a backward travelling voltage wave coming towards

the source, okay.

The question that normally occurs is that well there is this voltage V0
+ and the voltage V0

- and

there is a characteristic impedance of the transmission line at 0 even for the lossless case will

there be any power that would be dissipated in the transmission line turns out that for a lossless

transmission  line  no  power  will  be  dissipated  in  the  transmission  line  eventually  the  entire

powers from the source will be delivered to the load okay, a more detailed analysis as I said will

follow in a different module.

For now let us just look at very briefly what is the power carried by the transmission line what is

a power that is carried backwards and what is the relationship between all this, okay. So let us

dig righting.



(Refer Slide Time: 01:49)

By assuming that the source is a phasor okay, producing the voltage from V0e-jβz and I have a

source whose current is again a phasor producing a current of I0 e-jβz okay. Please note that these

are phasers the corresponding expressions in terms of time and z is given by after converting this

phasor into a proper equation what will you get this would be V0 cos ωt – βz, similarly the

current that you are considering as a function of both time and z will be the current I0 cosωt–βz.

Suppose  I  consider  some constant  z  plane  okay,  it  does  not  matter  what  plane  that  we are

considering but suppose we consider a constant z plane in which case it can simply represent a

source okay, does not even have to represent a transmission line. So for this constant z plane

what  would  be the average  power that  is  dissipated  so what  is  the  power that  is  dissipated

instantaneously that is vst x Ist in a given resistor well I do not need a resistor here, because I

know the current Is here.

And then you average this one over the time, what is the time average suppose x(t) is a function

of time then the average of this x(t) over a time t is given by this integral 1/T integration over any

time  period  t  x(t)dT  okay.  If  you  find  what  is  this  average  power  you  can  see  that  the

instantaneous power will be cosωt considered z=0 the constant plane, so that this would be 0 I0

cos2ωt integrated over one time period of this time variation which will be related to ω what you

get is V0I0/2.



In fact this relationship you already know because the peak value of the voltage is V0/√2 sorry

peak value is V0 the RMS value is V0/√2 the RMS current is I0/√2 the product of these two will

give  you the  average  power,  okay.  Now we have  a  transmission  line  whose  positive  going

voltage is given by V0
+ peak value e-jβ z similarly the current that would be carried will be I0

+ e-jβz

okay, again these are essentially phasers that we are considering.

You can go from the phasor to the average power when we do that there is a small problem that

might come u, okay. In general I know that I0
+ can be written as V0

+/Z0 even when you consider

these are plus to be a real quantity which sometimes it may not be the Z0 to be a  real quantity

then there is no problem. However in general for a lossy line Z0 is complex or even when the line

is lossless V0
+ might be complex.

This complex only indicates that this source is having a certain phase difference with respect to

the current and that could be for a different reason, okay. So what is the power that is carried by

this positive going voltage you will have to multiply these phases after converting this phasor

into the time domine multiplying and then writing this and it will turn out to be V0
+2/2.Z0. In this

case we are considering the characteristic impedance to be Z0.

In general this can be written as |V0
+|2/2Z0 case Z0 is considered to be real without doing any

work if I were to ask you what would be the power.
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That would be carried by the negative going voltage you will be able to write this as |V0
-|2/2Z0

correct, so when you write like this |V0
-|2/2Z0  you know that V0

- can be related to V0
+ through the

load impedance γ L and this load impedance γ L will then tell you the amount of power that would

be reflected, inside γL was always given to the ratio of the reflected voltage V0
- to the incident

voltage V0
+ this time when we substitute for V0

- from this expression into this expression for the

power carried by the voltage in the backward direction this turns out to be magnitude γL
2 times |

V0
+|2/2Z0.

If you identify this power with the incident power then the power that is reflected will be given

by |γL|2 times t incident, okay. So you see that this is given by |L|2 into P incident and therefore

the ratio of the power that is reflected to the power that is incident is simply determined by γL or

the |γL| okay. Now you might ask what happened to the lossless condition that we derived well,

we only did half the part right, we considered the source to have generated a voltage the voltage

came hit the lode that the load does not match the characteristic impedance therefore produces

the reflection.

Now as the voltage comes back right, so at the voltage we have some power dissipated in the

load, but there is a power that is not dissipated that is coming backwards carried by the negative

propagating voltage or negative traveling voltage and this voltage comes in if I have a source

which is matched to the characteristic impedance then this reverse power or the reflected power

will be completely absorbed.



If that is not absorbed then there will be one more reflection here which will then carry some

power and because reflection magnitude is less than 1 the power carried again will be less then

there will be power carried backwards and this infinite series will happen such that every time

there is a reflection the amount of power carried by that particular voltage will actually go down

and down and eventually reach to 0, I did not say that in a lossless transmission line the moment

to connect the load I mean the power will be dissipated it actually goes at infinity I mean it can

potentially be at infinity.

But if you terminate one of the ends with a characteristics impedance so that there is a proper

matching happening then there would not be any further reflection and all the power will be

delivered to either the source or the load wherever you have achieved the power match. Usually

you want to achieve the power match at the load side, okay. But this is something that you have

to remember, so the reflected power is given by |γL|2 times incident power and the difference

between these two will be the one that would be delivered to the load.

There is one additional way of deriving these relationship, I know that I am average power has to

be  |V0
+|2/2Z0 considering  this  is  a  time  average  power  right,  considering  only  the  lossless

transmission line case that I am considering, okay. So this is the power that is actually carried by

this  is  the average power that  is  carried by forward going voltage.  I  can obtain this  by this

particular mathematical relationship I take half real part of V0
+I0

+ complex conjugate, right.

Let us go back there this V0
+ I0

+ are not just ordinary V0 and I0 that you know that these are the

phasers that we are considering. So if I know the phasor forms of these so I know this is nothing

but half of real part of the phasor for the forward going voltage is amplitude V0
+ e- jβz the phasor

for forward going current will be I0
+ which can be written as V0

+/Z0 but more importantly because

I am complex conjugating this one this becomes conjugate here the amplitude gets conjugated,

okay.

And e-jβz becomes e+jβz clearly this integrals will be equal to 1 and I0
+ complex conjugate can be

written as V0
+ complex conjugate divided by Z0, assuming Z0 to be real and what I get is half of |

V0
+|2/Z0, so you have to remember his if you know the fuser forms you can take the voltage

phasor, current phasor, conjugate the current phasor. So take the voltage phasor current so that

conjugate the current phasor multiply it by both of them okay, so that the term e-jβz there and  



e+ Jβz  get cancel with each other and give you a product of 1 and you get the average power,

okay.

You do not have to I mean this is the way to show that you get the average power using the

phasor relationship. So this was all about simple power calculation we will not do the exercises

related to that but what I want to do in the rest of the module is to give you some interesting

inputs.
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About the value of the input impedance of a transmission line whose length is some L and how is

it  connected  to  the  load  ZL okay,  we  consider  again  the  transmission  line  of  characteristic

impedance Z0 this could be terminated in a variety of loads we can denote this load as ZL please

note that this ZL is not indicating an inductive load, it could be any load that I am considering

just the way I am denoting this ZL in this demotion that L stands for load, not for the inductor.

The transmission line has a length L and what I am interested is to find out what is the input

impedance of this transmission line, of course I know what is the input impedance right, so this

is  nothing but  Z0 ZL+jZ0and βL/Z0+jZL and  βL this  is  the  relationship  that  I  know off,  okay

consider a special case where I take the load ZL to go off to infinity that is I open circuit the other

end.



So when I open circuit let me denote the input impedance seen from the transmission line as ZOC

okay,  so  this  is  the  situation  that  I  am considering  an  open  circuited  the  transmission  line

terminals and I am trying to measure what is the input impedance here of a transmission line

whose each characteristic  impedance is that  0 and a length of L. You know what this  is by

substituting for ZL=∞ or ZL going to ∞ you get this one as - jz0/tanβL. 

From a similar analysis I know what will happen when ZL goes to 0 that is to say a short circuit

the load side then the ZSC will be equal to + jZ0 tanβL look at these two equations carefully if I do

not know what is Z0 okay in a typical practical scenario you do not normally know what is Z0 you

can only estimate what is the value of Z0 if I do not turned I want to measure Z0  there is a very

simple procedure for us to follow or of course this has its problems.

But looking at the equation Is a simple procedure, I can play the transmission line open circuit

the other end ensure that this end is open circuited so there is no current flows in measure the

input impedance here what I will be measuring is ZOC  then replace the rotor circuit by a short

circuit connect a piece of wire out there and then measure the input impedance here, when I take

the two measurements then I can multiply this ZOC and ZSC.

And take square root of this to obtain ZO you can see that very easily right so multiplying both

sides will give you a multiplying both terms will give you will cancel tan θ on both sides -2n +

2n multiplication will give you one so the numerators ZO  and ZO  will give us ZO
2 so when you

find ZOC and ZSC you can find out what would be the characteristic impedance ZO , infact if I take

a printed circuit both and then I want to measure the  ε r,  the relative permittivity of this one,

okay. 

One way to measure the relative permittivity is to actually draw two micro strip lines over here

identical micro strip line okay one micro strip line is left open circuited the other one is short-

circuited  by  connecting  it  to  aground  plane  via  you  know  by  actually  tell  you  and  then

connecting a short circuit by placing a small conductor so that it goes down and connects to the

ground plane.

And from the other end connect a voltage source so you can connect a voltage source or you can

connect an impedance measuring bridge over here measure the impedances on the two ends from

there you find out what is the ZO and we will let us show that ZO is given by we already know



that for a lossless line it is given by √ L/C but the C will be dependent on the permittivity ε r, so

which then allows you to find out what is the permittivity or estimate the permittivity.

This is not a very accurate method but for most applications this method is alright, so this is how

you can actually use the knowledge of the measurement of the input impedance okay for various

conditions of the load in order to estimate the unknown value of the characteristic impedance

itself, in practice this is not exactly how it is done I just told you that it could be one it is not very

accurate but okay for some applications or most applications.

(Refer Slide Time: 15:49)

Let us go back to the input impedance expression okay and I want to consider again only the

special  case of short-circuited load I  know that short  circuited load is  given by or the input

impedance of the short circuit regular is given by +JZO  tan ßl I know what is ß, ß is given by

ω/UP  and for this transmission line I know that  UP is given by 1/√LC right and therefore I can

write ß as  ω √LC where L and C are the distributed inductance and capacitance values of this

transmission line.



So I will go ahead and write that one and instead of writing this small L, I will write this as Δ ,

where Δ is a small distance away from the load so you can think of this transmission line which

has been short-circuited and this length of the transmission line is this Δ that I am considering,

what is that length I mean what is the input impedance seems here of this short segment length

we can obtain that one by going back to this expression so ß will be equal to ω √LC.

So you will get J and I know ZO, ZO is nothing but √ L/C and the tan ß Δ can be approximated as

ß into Δ because I am considering Δ to be very small so the length of the transmission line is very

small compared to the wavelength so I can do a small angle approximation and write this as ß

into Δ ß is ω √LC and Δ is of course the length of the transmission line. You can see here that √C

can be cancelled and what you get is J ωL Δ.

There is a very short piece of transmission line which has been short-circuited on the other end

the input impedance just above about a small distance Δ from the from the short circuited line

actually gives you reactive impedance, in fact you can vary the frequency and change the amount

of reactants that you are going to see right. Well of course you change the frequency than  λ

changes so the value of Δ will not be the same it has to also change that you get the idea.

You can actually get in fact if you do not do this approximation just assume that you can change

the frequency ω then ω changes F changes λ changes λ and L relationship changes ß x L product

changes tan ß L will change giving you any value of reactants that you want. In fact if I plot the

reactants as a function of ß x L for this transmission line you will see that when ß L is small and

zero the reactance is not zero already and a ß L goes towards Π/2 the reactance rises to ∝ so at

Π/2.

The reactants would have become plus ∝ this is when you have short-circuited the load okay and

you get a inductive impedance over this side of course what would happen when ß L is negative

or you know you just go to the other end where you go from Π/ 2 to 3Π/ 2. You will see that

there will be a capacitive reactance that would come up from Π/2 to Π and again from Π to 3Π/2

you will go back to the inductance so the same piece of transmission line when it is terminated

with a short-circuit and then you change ß L either by changing ω or by changing L okay.

Or by changing the product of these two it is possible for you to go from an inductive reactance

of any value you want the value you want to find the value of this one you will be able to find it



by considering the length of the transmission line to be something like this okay. So any length

you want if you fabricate a lossless transmission line and terminated with short-circuit you can

get inductive reactance we can get capacitive reactance you can get inductive reactance again

what would be the behavior for a case of a circuit transmission line that is open circuited at the

lower side.

(Refer Slide Time: 19:44)

Before answering that question let us look at a very interesting scenario I know that the short

circuited transmission line of a length L will have an impedance input impedance of + J Z0 and ßl

right so as I grow from ß = 0 to Π/ 2 this value is always positive giving you a inductive value

right but what would have what was the impedance value ZSC at ß L = Π/ 2 at ß = Π/2 tan Π/2

was actually giving you ∝ and the value of ZSC was actually equal to  ∝ right. So you actually

started off with a transmission line which was short-circuited and then you started exchanging

you all started measuring the voltage so measuring the impedance at different points and you

move the distance of about λ/4 why λ/ 4 because ß L = Π/ 2 implies that L must be equal to λ/4.

Because  you  see  here  ß  is  2Π/  λ,  Π  cancels  L =  λ/  4  so  as  you  start  moving  along  the

transmission line and come to a distance of λ/ 4 you actually see that this input impedance here I

have seen at a distance of λ/4 from the load will look like an open circuit if you again move

another λ/4 distance then again it will look like a short circuit thus if you move a total distance of



λ/2  you  are  back  to  the  same  situation  where  the  impedance  will  be  exactly  equal  to  the

impedance of the other side.

Of course this all works for a lossless transmission line but this is a very interesting behavior so

on this transmission line lossless transmission line impedances are periodic okay impedance is

periodic with a period of λ/ 2 a fact that will be very important when we discuss Smith chart

okay, in fact what this L = λ/4 kind of a transmission line this is this is affectionately called as

quarter  wave transformer  I  have already alluded to  what  is  quarter  wave transformer  in  the

earlier module okay.

It is quarter wave because it is λ/ 4 okay so what is λ/4 transformer does is it turns a short circuit

into an open circuit it can also turn open circuit into a short circuit in case you start with an

inductance it can turn it into a capacitance you can start with a capacitance and obtain or turn it

into an inductor so the same node will show impedance different impedance at different points

along the transmission line and this magic can happen because of this particular relationship.

(Refer Slide Time: 22:33)

Inside you can easily show that this is true for a general case by going back to the expression for

Z in I know Z in is Z0 x ZL + JZO now tan ß L this would be ∝ divided by Z0 + JZL tan ß and so

again when tan ß L goes to ∝ then this relationship is actually equal to Z0 x ZO/ZL or Z0
2 /ZL you

can see that no matter what ZL  I take after traveling λ/4 I will obtain 1/ ZL so I would have

inverted the load impedance inductor turns to a capacitor, capacitor turns into an inductor.



So this is all about the relationship between input impedance and the length of the transmission

line that I wanted to talk to you about, in the next module we will see that you know it would not

have to use calculators or use this complicated formulas to always transform one impedance to

another  impedance  because  in  a  typical  transmission  line  problem especially  when  you  are

constructing something on a printed circuit board you will have lot of components.

And many of these components will be connected by transmission lines if you have to go back to

this equations all the time to transform impedances that will be not only not intuitive to you, you

would not understand what is happening is just some calculator buttons that you are pressing the

second problem is that even pressing the calculator better is very tedious task okay.

So both you do not get an understanding from what is happening and you should also very

difficult  to keep doing it you can write a program but still  it  is of you know if you write a

program that will use our intuition so because of this people have developed graphical ways of

addressing this impedance transformation formula I mean transformation problems and we will

see  one  very  famous  graphical  aid  which  really  illustrates  how  these  impedances  are

transforming across transmission line.

And helps you solve many, many transmission line problems without in fact using a calculator

okay that miracle graphical help is called a Smith chart and the equations that describe the Smith

chart is what we are going to take up in the next module, thank you very much.
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