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Hello, welcome to another module in this massive online course. So, we are looking at

convolutional  codes  we are  looked at  the  state  diagram representation  and the  most

important trellis representation. And we have also seen that decoding of convolutional

code corresponds to finding a path through the convolutional,  but through the trellis

corresponding to the convolutional code, but what any path the path that corresponds to

the path or the path that  corresponds to the codeword that  was it  has the maximum

likelihood, this is known as the maximum likelihood decoding principle which has the

maximum  likelihood  of  having  been  transmitter  and  of  course,  the  corresponding

information sequence.

So, towards that we would like to explore this decoding of convolutional codes. And this

is going to be based on 2 central principles of fine. Remember we said the decoding of

convolutional codes aims to find the codeword, if the minimum hamming distance or

with the minimum distance metric path from the trellis curve minimum distance with

respect  to  the  received  codeword  and  towards  finding  that  codeword  which  has  the

minimum distance from the received codeword; we are going to be using 2 principles.

And I would like to spend some time trying to explain these 2 principles to you in this

module.
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So, we have principles of so, these are principles of convolutional decoding. These are

basically the principles
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That we are going to, what are these? These are key ideas to decode the received, the

received sequence or the received sequence. It might not be a codeword. So, we can

simply say the received sequence.  And in particular  as we have already seen we are

interested in the maximum, maximum likelihood decoder implies.
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The minimum distance decoder. Minimum distance between r bar this is the hamming

distance by distance r bar is the received word or the received sequence, you can say and

c bar is the decoded code word, and c bar is the decoded keyword ok.
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And the principle in the first principle that we are going to look at is the following; we

can call it principle number 1. And the first principle is the follows now of course, what

we have realized is basically the decoding, the decoding implies that since every code

corresponds to decoding implies,  finding a path through trellis  path means,  decoding



means  finding  path  through  trellis  in  which  implies  basically,  which  this  decoding

implies finding a path through the trellis. So, that is what your decoder implies which

means if I basically implies finding a state sequence and the transitions between the state

the time evolution that is a transition this implies finding a state sequence that is what is

the  state  sequence  through  which  the  decoder  has  progressed.  Through  which  the

encoder  has  processed  right  what  is  the  state  sequence  in  time  that  is  what  is  the

sequence of state what is the state at time 0 followed by state at time one state at time 2.

So, we want to find the corresponding state sequence the codeword which is basically

equivalent to finding the path which is nothing, but finding a state sequence through the

trellis which you can be mapped into a information bit sequence.

So, all these are one and the same se we are interested in finding a certain state sequence

corresponding  to  the  received  word.  The  codeword  correspond  to  which  has  the

minimum distance with respect to this we got ok.
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So, that is the basic idea if you try to understand it. Now if consider the state sequence let

us say we start with state s 0 there can be several intermediate states and at some point

we end up with state x j minus 1 at time j. So, this is at time 0 and this is at time j minus

1 and let us say there is a state s j at time j. Now the path the edges or the branches from

s 0 to s minus 1 are given by e 1 e 2 e j minus 1 and the branch from s j minus 1 to s j

corresponding to this minimum distance path is e j. So, what we say is let minimum



distance, let minimum distance from state s 0 state s j. Let this corresponding path be

minimum distance. So, the minimum distance, the minimum distance, minimum distance

path is e 1 e 2 e j minus 1 e j. So, this is your minimum distance path it goes through a

branches or edges e 1 e 2 e j minus 1 e j. 
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Then e 1 e 2 e j minus 1 is the minimum distance path from s naught to s j minus 1 this is

an important point. It is very easy to see this that is if from s naught to s j right, when you

go through state s j minus 1 e naught e 1 up to e j is the minimum distance path from s

naught to s j. Then e the edges e naught e 1 up to e j minus 1 must in themselves can

comprise of a minimum distance path from s naught to s j minus 1 as simple as that

correct. Because and the proof is very simple proof is it is seems like a 1 line proof.
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The proof is very simple, if this is not a minimum distance path from s naught let there

be another alternative minimum distance path that is, e 1 prime e 2 prime so on up to e

prime j plus 1. So, we apply proof by contradiction.

The proof by contradiction is simply, if there exists an alternative path from alternative

path e naught prime e prime 1 e prime j minus 1 which has minimum distance from s

naught to s j minus 1, from s naught to s j minus 1.
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Then what will happen is if we look at the distance comprising of the path e 0 e 1 e 2 up

to e j which is basically now the distance d min, correct? Which we have said is d min, d

min equals the distance corresponding to, now because the distance matrix is additive I

remember we have seen in the previous module the distance matrix is additive. So, I can

write this as i equal to 0 to j d of well I can write this as i equal to 0 or basically let say

we have e 1 e 2 I am sorry, we have e 1 e 2.

So, this is e 1 e 2 if there is another path e 1 e 2 e prime j minus 1, correct? Which has a

minimum distance, correct? From s naught to s minus 1 then what is going to happen is,

if you look at this is that the distance of e 1 e 2 e 3 is the distance matrix is additive. So,

this is simply go into d distance of e i which I can write as summation i equal to 1 to j

minus 1 d of e i plus the matrix the distance corresponding to the last branch e j.

(Refer Slide Time: 13:01)

Now we know that this is the distance corresponding to branches e 1 e 2 up to e j minus

1 and by our assumption we have seen e 1 prime e 2 prime e j minus 1 prime is the

minimum distance path. Therefore, this is greater than or equal to summation i equal to 1

2 j minus 1 d of e i prime plus d of e j which is nothing, but d of e 1 prime, e 2 prime, e

prime j minus 1 e j.

So, d min is greater than or equal to d of e 1 prime e 2 prime which is a contradiction

because that is a minimum distance path right.
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So,  we  are  obtained  a  contradiction.  So,  this  is  a  contradiction,  this  is  a,  this  is  a

contradiction. Reason mean this is the minimum distance; this has to be the minimum

distance. So, if there is another minimum distance path from s naught to s j minus 1 e 1

prime e 2 prime. So, on up to e prime j minus 1 then the minimum distance from s

naught to s j through s j minus 1 will simply be that minimum distance path e 1 prime e 2

prime up to e prime j minus 1 and is followed by the branch e j all right. So, you cannot

have a different sub path which is minimum distance from s naught to s j minus 1 it is

very simple.

If there is if I have to go for instance I am from IIT Kanpur if I have to have to travel

from Kanpur to Delhi and from Delhi to let say Bombay there is only one route then the

path and I want to trans and I want to travel along the minimum distance path then the

path I take from Kanpur to Delhi must be the minimum distance path as well. I cannot

take a sub optimal  path from Kanpur to Delhi and expect the overall  path to remain

minimum distance that is as simple as that. So, if there is an intermediate node the path

to that intermediate node must be the minimum distance as well.

So, basically; that means, at every node I can only, I need to only store to find optimal

minimum distance path at every node, I only need to store knowledge of the minimum

distance path I can ignore. So, a node can have several paths leading up to it, but if I am

interested in finding the minimum distance path. I only need to store knowledge of the



minimum distance path. I do not need to store knowledge of any other path, correct? If I

am interested in travelling from Delhi to other places and I am starting from Kanpur, I

only need to know the knowledge of the minimum distance path from Kanpur to Delhi

there might be several other paths from Kanpur to Delhi, but I do not need knowledge of

any other those paths because I  am interested only in the minimum distance path as

simple as that. So, hence at every state.

(Refer Slide Time: 16:50)

So what is happening is you have x j minus 1 you have x j and there might be several

paths coming into x j minus 1. Or they need not be e 1 and s j I just have s j minus 1 or I

just have any node for that matter let us call it just avoid confusion let us call it s k.

So, from s k I am interested in finding minimum distance path from s k. So, out of all

these things, let say this is the minimum distance path to s k then I can ignore all these

other paths. I only need knowledge, need only the knowledge of this minimum distance

path,  need only the knowledge of minimum distance path to s k. I can ignore, I can

ignore the rest of the paths that is the whole, I can ignore the rest need only to. So, there

is no need to. So, need only the knowledge of the minimum distance path no need to

store any other information ok?
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So, no need to store at each. So, that significantly simplifies. Now you will not realize

that this point why is important because if you go back to a trellis, if you look at your

trellis correct remember the trellis has 4 states.

(Refer Slide Time: 19:18)

Let us go back to your trellis. So, I if I can illustrate why this principle is important if

you look at this your trellis has 4 states, correct? And from each state there are 2 paths.

So  for  instance,  you  have  this  for  each  state  remember,  you  have  2  paths  and  this

continuous,  correct?  Now what  you will  realize  is,  so to  get  to  a  state  like  this  for



instance, I can go through this path, I can go through for instance, for instance, this path I

can go through for instance I can go through there are several other paths right.

So, the whole point is since each node. So, this split is into. So, each node split is into 2

paths, 2 paths, 2 paths. The total number of paths becomes exponential that is the whole

point. So, you see first node first layer of node split is into 2 paths again at second time

instance the node split into 2 paths third time inst. So, 2 into 2 into 2 into 2 after n stages

the total number of possible paths through the trellis becomes exponential. So, you can

come from a node you can take 2 paths, from the subsequent node you can take 2 paths

from that node you can take 2 paths.

So, if you look at these all the possible paths through the trellis, the number of paths

becomes exponential and therefore. If you have to keep track of the distances of all the

paths it  is impossible,  that is not possible.  And therefore,  you need to find a way to

optimize this efficiently, by reduce because exponential complexity no one can handle, it

cannot be handled in a modern day computing system for instance if you have a 64 stage

trellis the total number of possible stages will become 2 to the power of 64 if we have

hundred stage trellis the total number of possible path will be 2 to the power of hundred.

And that complexity cannot be you can have no computer or storage device that can store

the information corresponding to 2 to the power of hundred path that is, that is a gigantic

number. So, therefore, we this principle greatly simplifies the computation since at every

stage or every node you only need to store one path which is the minimum distance path.

So, the number of paths becomes exponential this is very difficult. In fact, I will write

impossible practically impossible, correct? For any practical number it is, for instance if

you have 100 stage it is impossible very difficult or if not possible to compute. And for

this principle this in principle gave greatly simplifies the computation that is computation

require for decoding the received codeword.
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Now the second principle is very simple as follows if I look at the principle number 2.

The second principle  if  I  have 2 states  s  i,  if  I  have 2 states  and the  corresponding

distances to be is this d i and d j and you have to reach a third state s k and the distance.

So, now, d i is the minimum distance remember we said we only need the minimum

distance to s i. So, this is d ik this is d jk. So, d i this is the d i, this is the minimum

distance to state i and d j is the minimum distance to state j.

Then the minimum distance to s j is k. So, minimum distance to s i is minimum distance

to s i is d i minimum distance to s j is d j.
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Now, minimum distance to s k is obvious and s k you can either go through s i, but the

minimum distance to s i is d i. So, the minimum distance to s i at minimum distance to s

k via s i is basically d i plus d ik. So, minimum distance to s k via state I is d i plus d ik.

And minimum distance to s k via d j will be minimum distance to j plus distance from

the and therefore, the overall distance minimum distance to s k will be the minimum of

these 2 and that is the important point. So, what we are saying is the minimum distance

to s i. So, we can reach s k through either s i or s j.
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So, for instance let us again take a simple example. Let say I have, let say I need to travel

to and let say I need to travel to Mumbai and this is Delhi or this is Kanpur. And I know

the distance from Delhi to Mumbai I know the distance from. So, this is your d ik and

this is your d jk and I know the distance to Delhi, this is the distance to Delhi minimum

distance, this is the minimum distance to Kanpur and the minimum distance basically to

Mumbai, if you can, if you have to go through either Delhi or Kanpur the minimum

distance  to  Mumbai  is  the  minimum of  the  distance  to  Delhi  plus  d  ik  comma  the

distance of Kanpur plus d jk.

That is all this says basically say something very simple that is, if I have to go through

node k via either i or j. I know the minimum distance to i I know the minimum distance

to j,  I  know the distance from i to k, I know the distance from j to k the minimum

distance of course, to k via i has to be d ik at d i plus d ik if minimum distance to k via j

has to be d j plus d jk and therefore, the overall minimum distance to k has to be the

minimum of these 2 quantities as simple as that.

So, what I know. So, this helps me propagate the minimum distance to next layer. So,

think of i and j as nodes at time at time, let say m minus 1 because we already used j.
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So, let us say these are nodes at time m minus 1; this is the node at time. If I know the

minimum distances to nodes at time instant m minus 1, then I can find the minimum

distance to node at time instant m, as simple as that. Because to reach nodes at time



instant  m, I have to pass through nodes at  time instant m minus 1 to reach a grater

destination I have to pass through a hub. So, basically nodes at time instant m minus 1

are basically hub through which I have to hop to reach the node at time instant m.

So, if I know the minimum distance. So, if I know the minimum distances to each hop

that is all of the nodes at time instant m minus 1. Knowing the distance from the hop to

the  destination  that  is  the  node  at  time  instant  m I  can  find  the  minimum distance

therefore, to the destination that is all this is say. So, d min is to node s k is minimum d i

plus d ik plus minimum d i plus d ik comma d j plus d jk this is an important and this we

will use in basically, as I have said finding minimum at time m given minimum distance

of nodes at time m minus 1. That is the important point. So, this will help finding the

minimum distance at time m given minimum distance of node nodes at time m minus 1

that is the important point ok.

So, these are the 2 principles. The first principle is that if there is any minimum distance

path that is passing through node s j minus 1, then the path up to node s j minus 1 must

be the minimum distance path as well and 2, if there are 2 intermediate nodes and a final

destination node and I know the minimum distances to each of the intermediate nodes

and I know the distances from the intermediate nodes to the destination node then, the

distance to the destination minimum distance to the destination node can be found using

the second principle.

So, these are the 2 principles which might be little abstract at this point and you might

find difficult to relate to the eventual viterbi decoder, but believe me. Firstly, you can see

that these are very intuitive I mean all the way we have stated them formally these are

very intuitive principles if you think about that. And 2 these are going to be, these simple

principles are going to lay the foundation for the viterbi decoder. That is going to find the

maximum likelihood, maximum likelihood estimate of the code word corresponding to

the received code. So, we will stop here.

Thank you very much.


